Back to Top
Skip to main content
 
 
 

Available Technologies

Title Sort ascending Date Posted Patent Information Opportunity
Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures USPN 6,908,497

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497, titled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures."

Disclosed in this patent is a new low-cost carbon dioxide (CO2) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or physisorption between layers of the substrate lattice. The polar amine liquids are located within these layers. This method eliminates the need for high surface area supports and provides absorption capabilities independent of the sorbent surface area, and can be regenerated.

Single-Step Synthesis of Carbon Capture Fiber Sorbents U.S. Patent Pending

This invention describes a single-stage preparation of a novel carbon capture fiber sorbent. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
Conventional pressure- or temperature-swing adsorption (PSA/TSA) processes have been widely considered for post-combustion carbon capture and direct air capture (DAC). However, the processes of pressurizing the flue gas in the case of PSA or the long regeneration time in the case of TSA are considered neither cost-effective nor energy efficient, which limit their use in large-scale carbon capture processes. Furthermore, the high heat released during carbon dioxide (CO2) adsorption onto conventional sorbent amine sites necessitate efficient heat redistribution away from the sorbent bed and back into the overall carbon capture process. Therefore, a low-cost and energy efficient carbon capture process that could be retrofitted onto existing power plants is needed.

Single Step Electrode Infiltration Process USPN 9,960,428

Research is active on the technology titled, “Method of Forming Catalyst Layer by Single Step Infiltration.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Simplified, Cost Effective Process for Extracting Lithium from Natural Brines USPN 10,315,926

Research is active on the development and refinement of a process for the extraction of lithium from natural brines. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Separation of CO2 From Multi-Component Gas Streams USPN 8,771,401

Research is active on the patented technology, titled "Apparatus and Process for the Separation of Gases Using Supersonic Expansion and Oblique Shock Wave Compression.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Sensors for Corrosion Monitoring in Harsh Environments U.S. Patent Pending

Research is active on the development of sensors for use in early detection and quantification of corrosion degradation. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Selective Hydrogen Monitoring Using Nanoparticle-Based Functional Sensors USPN 9,696,256

Research is currently active on the patented technology titled, “Noble and Precious Metal Nanoparticle-Based Sensor Layers for Selective H2 Sensing.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Selective H2 Sensing Through Use of Palladium and Platinum-based Nanoparticle Functional Sensor Layers Integrated with Engineered Filter Layers USPN 10,345,279

The invention is a method for sensing the H2 concentration of a gaseous stream through evaluation of the optical signal of a hydrogen sensing material comprised of Pd- or Pt-based nanoparticles dispersed in a matrix material. The sensing layers can also include engineered filter layers as the matrix or as an additional layer to improve H2 selectivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The ability to selectively sense H2 is critically important for a broad range of applications spanning energy, defense, aviation, and aerospace. One of the most significant needs is for sensors that are capable of leak detection of H2 at levels up to the lower explosive limit. Additional applications of hydrogen sensors requiring operation at elevated temperatures include monitoring of hydrogen in metallurgical processes as well as monitoring the composition of fuel gas streams in power generation technologies such as gas turbines and solid oxide fuel cells. Measurements of H2 levels dissolved in transformer oil can also enable condition-based monitoring to provide early detection of potential failures with large associated economic and environmental impacts.
 

Selective CO2 Conversion With Novel Copper Catalyst U.S.Patent Pending

This invention describes the synthesis and application of nanostructured copper (Cu) catalysts that selectively convert carbon dioxide (CO2) into carbon monoxide (CO). This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The electrochemical CO2 reduction reaction (CO2RR) is an appealing strategy for addressing man-made CO2 emissions because it can leverage excess renewable energy to produce carbon-neutral chemicals and fuels. However, the economic viability of large-scale CO2RR systems will depend on the ability to selectively and efficiently form desirable products. Because it is earth-abundant and can produce a variety of products, Cu is a popular CO2RR catalyst. Unfortunately, the wide product distribution of Cu introduces inefficiencies in the form of chemical separation steps.

Selective Charge-State Dependent Catalytic Activity USPN 10,358,726

Research is active on the technology titled, "Controlling Au25 Charge State for Improved Catalytic Activity." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.