Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Sort ascending Patent Information Opportunity
Polyphosphazene Blends for Gas Separation Membranes U.S. Patent Pending; USPN 7,074,256

These technologies are high-performance CO2 separation membranes made from polyphosphazene polymer blends.  NETL’s technology was originally developed to aid in separating CO2 from flue gas emitted by fossil-fuel power plants. The NETL membrane is cross-linked chemically using low intensity UV irradiation, a facile technique that improves the membrane’s mechanical toughness compared to its uncrosslinked polyphosphazene constituents. Membranes fabricated with this technique have demonstrated permeability of up to 610 barrer, with CO2/N2 selectivity in excess of 30, at a practical separation temperature of 40°C. NETL’s patent-pending technology is being bundled with Idaho National Laboratory’s (INL) patented technology, with NETL handling licensing.  NETL would work with a potential licensee and INL to license the technology. 


Challenge: 
Membrane-based separation is one of the most promising solutions for CO2 removal from post-combustion flue gases produced in power generation. Technoeconomic analyses show that membranes aimed for this application must possess high gas permeability; however, most high permeability materials suffer from poor mechanical properties or unacceptable loss in performance over time due to physical aging. This technology is a successful attempt to turn one of these high-performance materials with poor mechanical properties into one amenable for use in practical separation membranes with virtually no physical aging issues.
 

Improved Pelletized Immobilized Amine Sorbents for CO2 Capture USPN 10,065,174; USPN 10,603,654;

This invention describes basic immobilized amine sorbents (BIAS) with improved pelletization process and formulation for use in CO2 capture processes. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
BIAS sorbents demonstrate high CO2 capture capacity and thermal stability over multiple steam regeneration cycles and represent a promising approach for CO2 removal from a variety of source points, including coal and natural gas combustion power plants. Bench- and pilot-scale testing have demonstrated the feasibility of commercial-scale BIAS sorbents. However, full commercialization of BIAS sorbents requires pelletization. Commercially available silica typically serves as the support for amine-based particle sorbents, yet these materials are not commercially feasible due to their relatively low mechanical strength and difficult management in dynamic reactor systems. Thus, the development of an economical method of fabricating a strong silica-supported BIAS pellet is a primary concern.

Streamlining The Process To Extract Lithium, Rare Earth Elements From Natural Brines U.S. Patent Pending

Research is active on the development and refinement of a process for the extraction of lithium (Li) and rare earth elements (REEs) from natural brines. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Current leading technology to generate materials from natural brines requires a series of football field-sized slow evaporation ponds, as well as lengthy leaching, which takes approximately 18-24 months after leaving the well. Concentration processes of the selected materials require repeated pumping from one evaporation pond to another, followed by long-distance transportation (added expenses and carbon emissions) to a processing plant that generates the selected compounds by multiple carbonation steps by leaching. Current carbonation processes require various solid additives, including soda ash, lime, hydrochloric acid, organic solvent, sulfuric acid and alcohol. Several tons of additives may be required to produce only a ton of targeted material. Therefore, current operations are considered to be costly and environmentally harsh.

Encapsulation Method for More Durable Reactive Materials U.S. Patent Pending

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.

Energy Infrastructure Monitoring using Conformal Coaxial Helical Antennas and Distributed Electromagnetic Interrogation Schemes U.S. Patent Pending

The invention is a distributed radio frequency (RF) /electromagnetic (EM) interrogation scheme that leverages distributed antennas along a coaxial cable for subsurface, pipeline, and other energy infrastructure monitoring. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge: 
In industrial and wireless sensing, the communication channel often determines the characteristics and performance of the overall sensing network. For wellbore monitoring applications, telemetry challenges are acute because of harsh environmental conditions (elevated temperature and pressure, chemical corrosives) which restrict the application of complex electronics and instrumentation. In addition, inherent absorption of electromagnetic radiation within the subsurface environment limits the potential for free space wireless power and signal delivery over distances. However, distributed wireless sensors throughout the subsurface environment could provide unprecedent visibility for monitoring and minimizing environmental impacts associated with the wellbore and ensure safe and productive operation of oil and gas recovery processes, enhanced geothermal systems and carbon storage sites.  Similar needs exist for monitoring of natural gas pipelines and other energy infrastructure for which enhanced visibility can significantly impact reliability, resiliency, and security. 
 

Low-Cost Optical Sensor Array to Monitor Temperature and Dissolved Gases in Electrical Assets U.S. Patent Pending

The invention is a new low-cost way to form an optical sensor array that monitors multiple parameters such as temperature and hydrogen in essential components of electrical transmission and distribution networks. It uses multi-wavelength interrogation combined with multiple sensor elements using a single optical fiber. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Power transformers are among the most essential components of electrical transmission and distribution networks. To avoid the substantial financial and social expenses caused by catastrophic failures, there is a growing need to develop low-cost and real-time analytical techniques and instruments to detect and diagnose fundamental changes in the operating characteristics of transformers. Key parameters, such as dissolved gases content and temperature, provide valuable information for assessing the condition of transformers. For example, dissolved gas analysis (DGA) identifies electrical or thermal faults in transformers. In addition, temperature information is vital because when the temperature in transformers exceeds 90o C, the aging rate of insulation and tensile strength grows, resulting in a dramatic deterioration of transformer life expectancy. It is therefore of significant value to monitor the temperature under various ambient and loading conditions to identify failures before they result in significant damages. 

Selective H2 Sensing Through Use of Palladium and Platinum-based Nanoparticle Functional Sensor Layers Integrated with Engineered Filter Layers USPN 10,345,279

The invention is a method for sensing the H2 concentration of a gaseous stream through evaluation of the optical signal of a hydrogen sensing material comprised of Pd- or Pt-based nanoparticles dispersed in a matrix material. The sensing layers can also include engineered filter layers as the matrix or as an additional layer to improve H2 selectivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The ability to selectively sense H2 is critically important for a broad range of applications spanning energy, defense, aviation, and aerospace. One of the most significant needs is for sensors that are capable of leak detection of H2 at levels up to the lower explosive limit. Additional applications of hydrogen sensors requiring operation at elevated temperatures include monitoring of hydrogen in metallurgical processes as well as monitoring the composition of fuel gas streams in power generation technologies such as gas turbines and solid oxide fuel cells. Measurements of H2 levels dissolved in transformer oil can also enable condition-based monitoring to provide early detection of potential failures with large associated economic and environmental impacts.
 

Novel Method Concentrates Rare Earth Elements Within Coal Byproducts to Facilitate Extraction USPN 10,358,694

This patented technology establishes a novel method for concentrating rare earth elements (REEs) within coal byproducts to facilitate extraction processes. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
REEs are essential components of modern technological devices, such as cell phones and computer hard drives, that support a broad range of vital industries. China provides the bulk of the world’s supply, largely due to environmental and economic challenges associated with extraction. Coal resources used in energy, iron, and steelmaking operations contain quantities of REEs sufficient to meet U.S. needs for years to come, but not as enriched solids. Cost-effective technology that facilitates the recovery of REEs in their most useful form offers the potential to simultaneously boost America’s economy, national security, and independence.

Metal-organic Framework Films for Gas Sensor Applications U.S. Patent Pending

This invention describes a system and method for rapid, ambient-temperature growth of metal-organic framework (MOF) films for gas sensor applications. More specifically, the invention relates to growth of MOF films on advanced sensor devices such as distributed optical fiber and passive wireless like surface acoustic wave-based sensors. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

MOF thin films have emerged as particularly attractive candidates for gas sensing applications due to their tunable porosity and pore size, enabling them to be rationally designed to selectively absorb specific gasses of interest. MOFs are especially appealing due to their high selectivity and capacity for energy-relevant gasses such as carbon dioxide and methane. A critical step towards the development of MOF thin film devices is the ability to efficiently and reliably incorporate high-quality MOF layers onto a wide range of substrates like optical fibers. However, current techniques are often inconvenient due to long reaction times, heating requirements, equipment costs and/or poor control over crystal coverage and morphology.

Selective CO2 Conversion With Novel Copper Catalyst U.S.Patent Pending

This invention describes the synthesis and application of nanostructured copper (Cu) catalysts that selectively convert carbon dioxide (CO2) into carbon monoxide (CO). This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The electrochemical CO2 reduction reaction (CO2RR) is an appealing strategy for addressing man-made CO2 emissions because it can leverage excess renewable energy to produce carbon-neutral chemicals and fuels. However, the economic viability of large-scale CO2RR systems will depend on the ability to selectively and efficiently form desirable products. Because it is earth-abundant and can produce a variety of products, Cu is a popular CO2RR catalyst. Unfortunately, the wide product distribution of Cu introduces inefficiencies in the form of chemical separation steps.