Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Sort descending Opportunity
Low-Cost Optical Sensor Array to Monitor Temperature and Dissolved Gases in Electrical Assets U.S. Patent Pending

The invention is a new low-cost way to form an optical sensor array that monitors multiple parameters such as temperature and hydrogen in essential components of electrical transmission and distribution networks. It uses multi-wavelength interrogation combined with multiple sensor elements using a single optical fiber. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Power transformers are among the most essential components of electrical transmission and distribution networks. To avoid the substantial financial and social expenses caused by catastrophic failures, there is a growing need to develop low-cost and real-time analytical techniques and instruments to detect and diagnose fundamental changes in the operating characteristics of transformers. Key parameters, such as dissolved gases content and temperature, provide valuable information for assessing the condition of transformers. For example, dissolved gas analysis (DGA) identifies electrical or thermal faults in transformers. In addition, temperature information is vital because when the temperature in transformers exceeds 90o C, the aging rate of insulation and tensile strength grows, resulting in a dramatic deterioration of transformer life expectancy. It is therefore of significant value to monitor the temperature under various ambient and loading conditions to identify failures before they result in significant damages. 

Computational and Simulation-Based Tools for Drilling Optimization U.S. Patent Pending

Research is active on the patent pending technology titled, “MSE-Based Drilling Optimization Using Neural Network Simulation.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Energy Infrastructure Monitoring using Conformal Coaxial Helical Antennas and Distributed Electromagnetic Interrogation Schemes U.S. Patent Pending

The invention is a distributed radio frequency (RF) /electromagnetic (EM) interrogation scheme that leverages distributed antennas along a coaxial cable for subsurface, pipeline, and other energy infrastructure monitoring. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge: 
In industrial and wireless sensing, the communication channel often determines the characteristics and performance of the overall sensing network. For wellbore monitoring applications, telemetry challenges are acute because of harsh environmental conditions (elevated temperature and pressure, chemical corrosives) which restrict the application of complex electronics and instrumentation. In addition, inherent absorption of electromagnetic radiation within the subsurface environment limits the potential for free space wireless power and signal delivery over distances. However, distributed wireless sensors throughout the subsurface environment could provide unprecedent visibility for monitoring and minimizing environmental impacts associated with the wellbore and ensure safe and productive operation of oil and gas recovery processes, enhanced geothermal systems and carbon storage sites.  Similar needs exist for monitoring of natural gas pipelines and other energy infrastructure for which enhanced visibility can significantly impact reliability, resiliency, and security. 
 

Encapsulation Method for More Durable Reactive Materials U.S. Patent Pending

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.

Streamlining The Process To Extract Lithium, Rare Earth Elements From Natural Brines U.S. Patent Pending

Research is active on the development and refinement of a process for the extraction of lithium (Li) and rare earth elements (REEs) from natural brines. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Current leading technology to generate materials from natural brines requires a series of football field-sized slow evaporation ponds, as well as lengthy leaching, which takes approximately 18-24 months after leaving the well. Concentration processes of the selected materials require repeated pumping from one evaporation pond to another, followed by long-distance transportation (added expenses and carbon emissions) to a processing plant that generates the selected compounds by multiple carbonation steps by leaching. Current carbonation processes require various solid additives, including soda ash, lime, hydrochloric acid, organic solvent, sulfuric acid and alcohol. Several tons of additives may be required to produce only a ton of targeted material. Therefore, current operations are considered to be costly and environmentally harsh.

Improved Rare Earth Element Extraction Method from Coal Ash U.S. Patent Pending

This invention describes an improved method for extracting rare earth elements (REEs) from coal ash at ambient temperatures. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
As China currently controls the supply and prices of almost all the world’s REEs, developing a domestic supply is critical for the continued manufacturing of technologies that support nearly all modern devices, including critical systems for energy and national defense. REE extraction efforts from domestic sources of coal and coal-related resources have emerged as a viable solution, but successful methods must be both cost-effective and environmentally friendly.

Current methods and technologies for REE extraction from ore and other sources can be hazardous and expensive to implement without harming the environment or workers. For example, common practices employ high temperatures and strong acids or bases. This technology seeks to overcome these and other issues with current REE extraction methods by turning to a material that is currently viewed as a waste – coal ash.

Downhole Laser System With an Improved Laser Output Production and Data Collection U.S. Patent Pending

This patent-pending technology establishes a novel system and method for laser induced breakdown spectroscopy (LIBS) applications. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Low-cost, efficient monitoring of remote locations has and continues to be highly sought in the industry. For example, drilling production or injection wells for oil/gas extraction or carbon dioxide (CO2) storage always has the potential for leakage into the surrounding formations and environment. The ability to measure the subsurface fluids in and around the injection/production area before and after subsurface activities becomes more important when there is a suspected leak. Current downhole monitoring systems rely on bulk parameters such as pH and conductivity. Lab based systems can provide trace element measurements of subsurface fluids but require fluids to be taken from the field and digested prior to measurement. A system that can provide trace element measurements in real time while deployed in the subsurface is potentially of great value.

Current diode pumped solid state (DPSS) laser systems used for laser induced breakdown spectroscopy applications in fluid system measurements have numerous limitations. First, the systems are susceptible to dimensional changes caused by temperature and pressure swings in fluctuating environments in downhole applications. A second issue is the size of the laser spark that is produced in the fluid for measurements affecting signal strength. The third issue is the efficient collection and transmission of the plasma emission for analysis.

Microwave Active Metal Oxides for CO2 Dry Reforming of Methane U.S. Patent Pending

This patent-pending technology establishes a novel system and method for the microwave-assisted dry reforming of methane. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Traditional steam reforming of methane to produce hydrogen (H2), which is then reacted with carbon (CO) to produce methanol and other industrial commodity chemicals, is an extremely energy intensive process with large carbon footprint. For example, the steam reforming reaction produces 10 tons of carbon dioxide (CO2) for every ton of H2. Methane dry reforming uses an alternative reaction that uses CO2 as a soft oxidant to produce CO and H2 from methane, which can be further processed into methanol or hydrocarbons. Further, using CO2 to produce commodity chemicals, such as H2 and CO, can generate revenue to offset carbon capture costs, reduce the carbon footprint of fossil-fuel powered processes, and allow sustainable use of fossil fuel resources.

Traditional dry reforming techniques are extremely energy intensive and require very high temperatures (>800C) that make it unpractical economically compared with the lower-temperature, carbon-positive, methane steam reforming. Microwave-assisted catalysis has been demonstrated as an enabling technology to promote high temperature chemical processes. Unlike traditional thermal heating, microwaves can rapidly heat catalysts to extremely high temperatures without heating the entire reactor volume. This reduces heat management issues of conventional reactors and enables rapid heating/cooling cycles. Ultimately, this can allow reactors to utilize excess renewable energy on an intermittent basis (load follow) to promote traditionally challenging, thermally-driven reactions for on-demand chemical production.

Microwave absorption is a function of the electronic and magnetic properties of the material, and a properly designed catalyst may function as a both a microwave heater and a reactive surface for driving the desired reaction. Microwave absorption is extremely sensitive to the catalyst’s chemical state and electronic structure, and effective catalysts must maintain microwave activity across a wide range of temperatures in both oxidative and reductive environments.

 

Spouted Bed Reactor for the Fluidization of Fine Particles U.S. Patent Pending

Research is active on the design of a spouted bed with a spoutable media to more easily fluidize the fine particles involved in industrial processes by improving mixing and increasing contact area between the fluidizing gas and the particles. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Bottom-Up Assembly of Graphene Quantum Dots to Form Two-Dimensional Amorphous Carbon Film U.S. Patent Pending

This invention describes a uniquely engineered 2-D amorphous carbon film and a memristor fabricated with coal-derived carbon quantum dots as the dielectric (switching) media for resistive random-access memory (RRAM). The atomic dielectric carbon layer can provide large storage density and 3-D packing ability, allowing memory and logic devices to be integrated in one chip, providing faster data processing with low energy consumption. This patent application is jointly owned by NETL and the University of Illinois-Urbana Champaign (UIUC) and it is available for licensing and/or further collaboration.

Challenge
Memory is essential to future computing with the exponential growth of data. These emerging memory technologies aim to revolutionize the existing memory hierarchy. Various emerging memory technologies are actively being investigated to meet ideal performance characteristics. RRAM has various advantages such as easy fabrication, simple metal-insulator-metal structure, excellent scalability, nanosecond speed, and long data retention. RRAM has been commercialized since 2013. Despite showing great promise over conventional RAM and its popularity in academia, RRAM has not become commercially popular. This is due to high device variability and high operation voltage.