Back to Top
Skip to main content

Twitter Icon Linkedin Icon Facebook Icon Instagram Icon You Tube Icon Flickr Icon

Solid Oxide Fuel Cell

 

 

Solid oxide fuel cells (SOFC) are electrochemical devices that convert chemical energy of a fuel and oxidant directly into electrical energy. Since SOFCs produce electricity through an electrochemical reaction and not through a combustion process, they are much more efficient and environmentally benign than conventional electric power generation processes. Their inherent characteristics make them uniquely suitable to address the environmental, climate change, and water concerns associated with fossil fuel based electric power generation.

The NETL Fuel Cell Program maintains a portfolio of RD&D projects that address the technical issues facing the commercialization of SOFC technology and a series of increasingly larger demonstration projects intended to validate the solutions to those issues. To successfully complete the maturation of the SOFC technology from its present state to the point of commercial readiness, the Program’s efforts are channeled through three key technologies, each of which has its respective research focus.

Cell Development—Research is focused on the cell-related technologies critical to the commercialization of SOFC technology. The components of the SOFC - the anode, cathode and electrolyte – are the primary research emphasis of this key technology. The electrochemical performance, durability, and reliability of the solid oxide fuel cell are key determinants in establishing the technical and economic viability of SOFC Power Systems. Thus the SOFC Program maintains a diversified portfolio of cell development projects that are focused on improving electrochemical performance and cell power density, reducing long term degradation, developing more robust cells, and cost reduction. Additional research projects include evaluation of contaminants, advanced materials, materials characterization, advanced manufacturing, and failure analysis. Program participants include academia, national laboratories, small businesses, the NETL Research & Innovation Center, and other R&D organizations. The portfolio maintains a mix of near-, mid-, and long-term R&D projects at bench- and laboratory-scale.

Core Technology—This key technology conducts applied research and development on technologies – exclusive of the cell components – that improve the cost, performance, robustness, reliability, and endurance of SOFC stack or balance-of-plant (BOP) technology. Projects in the Core Technology portfoliofocus on interconnects and seals, identify and mitigate stack-related degradation, develop computational tools and models, and conduct laboratory- and bench-scale testing to improve the reliability, robustness, endurance, and cost of stacks and BOP components, respectively. Program participants include academia, national laboratories, small businesses, the NETL Research & Innovation Center, and other R&D organizations.

Systems Analysis—NETL possesses strong systems analysis and policy support capabilities. Systems analysis support of the SOFC Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for R&D programs and pathways to the commercialization and deployment of SOFC power systems.

Systems Development—This key technology maintains a portfolio of projects that focus on the research, development, and demonstration (RD&D) of SOFC power systems. Project participants (Industry Teams) are independently developing unique and proprietary SOFC technology suitable for either syngas- or natural gas fueled applications. The Industry Teams are responsible for the design and manufacture of the fuel cells, integration of cells hardware development, manufacturing process development, commercialization of the technology, and market penetration. These developers also focus on the scale up of cells and stacks for aggregation into fuel cell modules and the validation of technology. This key technology also supports laboratory-scale stack tests, proof-of-concept systems, pilot-scale demonstrations, and entry-into-service power systems. The multi-industry team approach not only provides technology diversification but also offers insurance against business environment risk, reducing program dependency on a single developer. The Industry Teams have the opportunity to determine relevant R&D topics based on their design-specific experience and needs and are held to a common set of performance and cost metrics.

Also within the Systems Development key technology is a portfolio of projects focused on innovative concepts. These projects conduct bench-scale R&D on innovative SOFC stack technologies that have the potential to significantly decrease the cost of SOFC power systems by leveraging advancements in lower-cost materials, advanced manufacturing methods, and/or alternative architectures.

 

SOFC Key Technologies
 
Technology area contact:

Shailesh Vora