Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Opportunity Sort descending
Efficient Process for Converting Methane to Syngas USPN 10,106,407

Research is active on a method to convert methane into synthesis gas using mixed metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Natural gas (NG), which is composed primarily of methane, is one of the most abundant, low-cost carbon-containing feedstocks available. The economically available route to produce valuable chemicals from methane is via synthesis gas followed by different chemical routes to manufacture the desired chemicals. In a large-scale industrial plant, the production of syngas accounts for a large part of the total costs. Therefore, it is important to develop more efficient and cost-effective methods for the conversion of methane to syngas.

Embedded Gas and Temperature Sensors for Extreme Environments USPN 8,411,275; USPN 8,638,440; USPN 8,741,657; USPN 8,836,945; USPN 9,568,377; USPN 9,019,502; USPN 9,964,494

Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. A portfolio of patented technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities.

Distributed Optical Sensor for CO2 Leak Detection USPN 8,786,840

Research is active on the patented technology "Distributed Optical Sensor for CO2 Leak Detection". This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

High-Temperature Sensors for Monitoring and Control of Solid Oxide Fuel Cells U.S. Patent Pending

Research is active on the application of embedded optical fiber based sensors to an operational solid oxide fuel cell (SOFC) in conjunction with high-temperature stable distributed interrogation approaches to allow for local monitoring of the absolute value and spatial gradient of the chemical composition and temperature of an anode or cathode stream.

Integration of Thermal Energy Storage into Solid Oxide Fuel Cell Systems U.S. Patent Pending

Research is active on the design and development of solid oxide fuel cell (SOFC) systems featuring thicker interconnects for increased thermal energy storage. A large amount of heat can then be extracted from the interconnects and used to quickly increase the electric load in a hybrid power system. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Hydrophobic Carbon Capture Solvent USPN 10,589,228

Research is active on the design and synthesis of a new carbon dioxide (CO2) capture solvent based on PEG-Siloxane. Unlike conventional gas-removal solvents, the NETL’s new solvent technology is hydrophobic and has a low vapor pressure. A hydrophobic solvent with low vapor pressure is highly advantageous because it can reduce the cost and energy-consumption associated with CO2 capture by simplifying solvent regeneration and negating the need to remove water from fuel gas. For example, this solvent operates above room temperature and can be regenerated using low-grade and waste heat, whereas commercially available solvents operate below room temperature and can’t be regenerated using low-grade or waste heat This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Cyber-Physical System Model for Monitoring and Control U.S. Patent Pending

Research is active on the design of a cyber-physical system to monitor and exert control over multistage networked plants and processes such as multistage chemical processing plants and power generation facilities. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Spouted Bed Reactor for the Fluidization of Fine Particles U.S. Patent Pending

Research is active on the design of a spouted bed with a spoutable media to more easily fluidize the fine particles involved in industrial processes by improving mixing and increasing contact area between the fluidizing gas and the particles. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Polymeric Sorbent for Use in CO2 Capture and Separation USPN 10,323,125

Research is active on the design, synthesis, and use of polymeric sorbents for gas separation applications. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Application of Oxide Dispersion Strengthening Coatings for Improved Transpiration Cooling USPN 9,579,722

Research is active on the development and incorporation of oxide dispersion strengthening (ODS) coatings for use in gas turbine component cooling applications. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.