Title | Date Posted Sort ascending | Patent Information | Opportunity |
---|---|---|---|
Multi-Functionalized Basic Immobilized Amine Sorbents for Removal of Metal Contaminants from Wastewater | U.S. Patent Pending | The invention is a new type of amine-based sorbent material that has increased affinity towards heavy metal capture, from a variety of sources that exceeds the existing amine-sorbent ability by greater than 50%. This invention involves use of a polyamine that is chemically tethered to the surface of a solid silica support through use of a crosslinker and further stabilized through hydrogen bonding with a linker/cross linker. These sorbents can be used for the capture of heavy metals from a variety of aqueous sources. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Challenge The US Resource Conservation and Recovery Act (RCRA) gave the US Environmental Protection Agency the authority to establish and enforce regulatory policies and toxicity limits regarding Arsenic (As), Cadmium (Cd), Chromium (Cr), Lead (Pb), Mercury (Hg), Selenium (Se), and other metals. Many of these metals present a distinct challenge for capture because they are most commonly present in the polyatomic oxy-anion form. Sources for most of these contaminant metals include flue gas desulfurization (FGD) wastewater streams. These streams result from the treatment of fossil fuel-derived, post combustion flue gas with aqueous-based technologies. The well-known and widespread contamination of metals in drinking water and other terrestrial water sources through natural processes or human activity, demands remediation. In addition, radioactive pollutants in aqueous form have raised concerns about exposure levels in the nearby communities because of fears that these fission products could make their way into the food chain. |
|
Metal-Loaded Basic Immobilized Amine Sorbents for the Removal of Metal Contaminants from Wastewater | U.S. Patent Pending | NETL's basic immobilized amine sorbents (BIAS) have previously been shown effective at removing heavy metals and radioactive ions from aqueous sources. Chelating the amines with metals such as iron or copper significantly increases the heavy metal capture affinity of the sorbents, up to 50% over the non-metal chelated amines. In this invention, the metal-chelated polyamine is chemically tethered to a solid silica support (SiO2) via a crosslinker. The sorbents resist leaching by H2O in an aqueous stream containing heavy oxyanion-based (and other) metals and demonstrate stability over a pH range of 5 - 14. Cationic heavy metals are captured by the amine functional groups (-NH2, -NH, -N) from the polymeric network while oxyanionic metal species bind readily to the metal loaded sites. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. ![]() Challenge Heavy metals are common in industrial wastewater streams such as those associated with flue gas desulfurization (FGD), acid mine drainage, hydraulic fracturing, and nuclear fission. As heavy metals pose health and environmental hazards, there is a critical need to remediate them, i.e., safely and efficiently remove them from the aqueous sources. The US Resource Conservation and Recovery Act (RCRA) gave the US Environmental Protection Agency the authority to establish and enforce regulatory policies and toxicity limits arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), selenium (Se), and other metals. Many of these metals present a distinct challenge for capture because they are most commonly present in the polyatomic oxy-anion form. Sources for most of these contaminant metals result from the treatment of fossil fuel-derived, post-combustion flue gas with aqueous-based technologies. The well-known and widespread contamination of RCRA metals in drinking water and other terrestrial water sources either through natural processes or resulting from human activity, demands remediation. |
|
Method of Fabricating Low-Loss and Low-Noise Hollow Waveguides for Visible Wavelength Applications | U.S. Patent Pending | The invention is method of fabricating a hollow glass waveguide (tube that transmits light) that exhibits low loss in the visible or short-wave spectral region and is optimized for Raman spectroscopy or visible laser beam delivery. Prior art hollow capillaries suffer high optical loss and poor visible transmission, but the NETL invention produces these high-quality capillaries via a specialized deposition system. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Hydrophobic Alkyl-Ester Physical Solvents for CO2 Removal from H2 Produced from Synthesis Gas | U.S. Patent Pending |
Challenge State-of-the-art precombustion CO2 capture processes predominantly employ hydrophilic physical solvents. Current commercial physical solvents touted for IGCC CO2 capture were developed for removing acid gases from raw natural gas streams. Therefore, they were designed to remove significant amounts of water from the process gas. As such, the focus was on the purification of the process gas with less concern for generation of high-purity CO2 streams suitable for pipeline transmission and sequestration. While water removal is important for natural gas pipeline applications, it is not favorable for applications in which the fuel stream is directly combusted on-site, as would be encountered in IGCC systems. |
|
Single-Step Synthesis of Carbon Capture Fiber Sorbents | U.S. Patent Pending | This invention describes a single-stage preparation of a novel carbon capture fiber sorbent. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Fiber Optic pH Sensor for High-Temperature and High-Pressure Environments | U.S. Patent Pending | This invention describes a pH sensor comprising an optical fiber coated with metal-oxide based pH sensing materials for use in high-temperature and high-pressure environments such as wellbores and the challenging high pH range relevant for wellbore cement. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Catalysts for Thermal Conversion of Carbon Dioxide to Carbon Monoxide or Synthesis Gas Using Fuels | U.S. Patent Pending | This invention describes novel iron-based catalysts for conversion of carbon dioxide (CO2) to produce valuable gases such as carbon monoxide (CO) or syngas in the presence of fuel (biomass, coal, methane) for commercial and industrial applications while reducing greenhouse gas emissions. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Creep Resistant Ni-Based Superalloy Casting and Manufacturing | U.S. Patent Pending | This invention describes an improved casting and manufacturing method for a creep-resistant nickel-based superalloy for advanced high-temperature applications. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge |
|
Bottom-Up Assembly of Graphene Quantum Dots to Form Two-Dimensional Amorphous Carbon Film | U.S. Patent Pending | This invention describes a uniquely engineered 2-D amorphous carbon film and a memristor fabricated with coal-derived carbon quantum dots as the dielectric (switching) media for resistive random-access memory (RRAM). The atomic dielectric carbon layer can provide large storage density and 3-D packing ability, allowing memory and logic devices to be integrated in one chip, providing faster data processing with low energy consumption. This patent application is jointly owned by NETL and the University of Illinois-Urbana Champaign (UIUC) and it is available for licensing and/or further collaboration. Challenge |
|
Microwave Active Metal Oxides for CO2 Dry Reforming of Methane | U.S. Patent Pending | This patent-pending technology establishes a novel system and method for the microwave-assisted dry reforming of methane. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory. Challenge Traditional steam reforming of methane to produce hydrogen (H2), which is then reacted with carbon (CO) to produce methanol and other industrial commodity chemicals, is an extremely energy intensive process with large carbon footprint. For example, the steam reforming reaction produces 10 tons of carbon dioxide (CO2) for every ton of H2. Methane dry reforming uses an alternative reaction that uses CO2 as a soft oxidant to produce CO and H2 from methane, which can be further processed into methanol or hydrocarbons. Further, using CO2 to produce commodity chemicals, such as H2 and CO, can generate revenue to offset carbon capture costs, reduce the carbon footprint of fossil-fuel powered processes, and allow sustainable use of fossil fuel resources. Traditional dry reforming techniques are extremely energy intensive and require very high temperatures (>800C) that make it unpractical economically compared with the lower-temperature, carbon-positive, methane steam reforming. Microwave-assisted catalysis has been demonstrated as an enabling technology to promote high temperature chemical processes. Unlike traditional thermal heating, microwaves can rapidly heat catalysts to extremely high temperatures without heating the entire reactor volume. This reduces heat management issues of conventional reactors and enables rapid heating/cooling cycles. Ultimately, this can allow reactors to utilize excess renewable energy on an intermittent basis (load follow) to promote traditionally challenging, thermally-driven reactions for on-demand chemical production. Microwave absorption is a function of the electronic and magnetic properties of the material, and a properly designed catalyst may function as a both a microwave heater and a reactive surface for driving the desired reaction. Microwave absorption is extremely sensitive to the catalyst’s chemical state and electronic structure, and effective catalysts must maintain microwave activity across a wide range of temperatures in both oxidative and reductive environments.
|