Back to Top
Skip to main content
 
 
 
FOA Logo
Today, the U.S. Department of Energy (DOE) and NETL have selected two projects to receive approximately $2 million in federal funding for cost-shared research and development. The projects will improve coal combustion residuals management under the funding opportunity announcement (FOA) DE-FOA-0002190, Research for Innovative Emission Reduction Technologies Related to Coal Combustion Residuals. The selected projects represent the first round of selections for this FOA. Applications are still being accepted for the second round of the FOA, which closes on September 30, 2020. Coal combustion residuals (CCRs) consist primarily of fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) gypsum, and other FGD-solid by-products, from coal-fired power plants. Research and development efforts under this FOA aim to economically increase the beneficial use and management of CCRs, reducing the volume needed to be disposed of in impoundments while protecting the environment and the health and safety of the public.
FOA Logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) and NETL have selected 11 projects to receive approximately $17 million in federal funding for cost-shared research and development projects for carbon utilization. The projects will develop and test technologies that can utilize carbon dioxide (CO2) from power systems or other industrial sources as the primary feedstock. The research goal of DOE’s Carbon Utilization Program  is to reduce emissions and transform waste carbon streams into value-added products.
NRAP
Over the last 10 years, the NETL-led National Risk Assessment Partnership (NRAP) has built industrial confidence and worked to accelerate the commercial deployment of large-scale geologic carbon storage (GCS), which will allow for the continued use of abundant fossil fuels in an environmentally responsible manner by safely and permanently storing carbon dioxide from industrial sources deep underground. Now well into its second phase, NRAP is expanding its award-winning toolset and forging new collaborations that will continue to improve the initiative’s ability to address critical questions of GCS risk management.
Dustin
Placed end to end, the total length of the rock core samples scrutinized last year by NETL researcher Dustin Crandall, Ph.D., and his colleagues would span roughly 10 football fields. Driving much of that impressive volume is the need to complete rock core characterization studies to support large-scale geologic carbon sequestration and to make that data available to the public. NETL supports projects to safely and permanently store carbon dioxide (CO2) from power plants and other industrial sources by injecting it into deep underground reservoirs capped by layers of non-porous rock. These efforts not only reduce emissions of greenhouse gases; they also support continued use of abundant fossil fuels such as coal and natural gas in an environmentally responsible manner.
CO2
A new iteration of NETL's CO2-SCREEN software application is enabling researchers to more accurately estimate carbon dioxide storage potential in previously overlooked locations, opening the door for carbon capture utilization and storage (CCUS) projects on a large scale, along with new enhanced oil recovery operations. Originally developed to estimate prospective carbon dioxide (CO2) storage potential in saline and shale formations, the latest version of the Lab's CO2-SCREEN (Storage prospeCtive Resource Estimation Excel aNalysis) tool can be used for estimations in residual oil zones (ROZs), which can serve as valuable sites for CCUS projects. ROZs are deposits of immobile oil typically found underneath conventional reservoirs. These reservoirs have essentially been "waterflooded” by nature — natural water movement through the reservoir, pushing the oil in the direction of production wells. The U.S. Department of Energy estimates ROZs could contain 100 billion barrels of recoverable oil, representing a substantial yet underutilized source of domestic energy.
Carbon Capture
A first-of-its-kind suite of tools developed by NETL researchers is enabling better decision-making regarding the economic challenges of carbon capture, utilization and storage (CCUS) and helping stakeholders to effectively evaluate the costs of implementing these technologies in electric power and industrial plants. The new tools and resources offer a step toward widespread implementation of CCUS technologies, which is an important strategy for mitigating CO2 emissions from fossil fuel-based power generation and industrial sources.
FOA Announcement
The U.S. Department of Energy’s Office of Fossil Energy and NETL have announced approximately $110 million in federal funding for cost-shared research and development (R&D) projects under three funding opportunity announcements (FOAs).Approximately $75M is for awards selected under two FOAs announced earlier this fiscal year; $35M is for a new FOA. These FOAs further the Administration’s commitment to strengthening coal while protecting the environment. Carbon capture, utilization, and storage (CCUS) is increasingly becoming widely accepted as a viable option for fossil-based energy sources—such as coal- or gas-fired power plants and other industrial sources—to lower their carbon dioxide ( CO2) emissions.
Carbon Capture Event
NETL will host its first comprehensive annual project review meeting to showcase cutting-edge research under four Office of Fossil Energy research programs aimed at developing novel technological solutions to America’s energy challenges during a weeklong session Aug. 26-30 in Pittsburgh. The inaugural Carbon Capture, Utilization and Storage, and Oil and Gas Technologies Integrated Project Review Meeting, “Addressing the Nation’s Energy Needs Through Technology Innovation,” will be held at the David L. Lawrence Convention Center. All interested parties are welcome to participate; registration is required.
NSLSII
Photos courtesy of Brookhaven National Laboratory. NETL researchers studying the chemical conversion of carbon dioxide (CO2) into useful products are using powerful X-rays available at U.S. Department of Energy (DOE) facilities to shed light on the process. A team of NETL research staffers — including Douglas Kauffman, Thuy-Duong Nguyen-Phan, Christopher Marin and Congjun Wang — was recently awarded highly competitive, proposal-based experiment time at Brookhaven National Laboratory’s (BNL) National Synchrotron Light Source II (NSLS II) X-ray facility in Upton, New York. With help from BNL Staff Scientist Eli Stavitski, the team conducted advanced X-ray characterization techniques Feb. 18-19 to study materials that chemically convert CO2 into value-added products.
Journal of Physical Chemistry C
NETL research that created a new copper-gold alloy that can selectively convert carbon dioxide (CO2) into carbon monoxide (CO) — a breakthrough that could impact a $3.4 billion global market for methanol and other synthetic fuels — has landed on the cover of a prestigious national scientific journal. An article about the research appeared as the cover story in the Dec. 13, 2018, Journal of Physical Chemistry C. The manuscript was titled “Selective Electrocatalytic Reduction of CO2 into CO at Small, Thiol-Capped Au/Cu Nanoparticles.” A catalyst is a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change. Nanomaterial-based catalysts are especially effective because their high surface area can dramatically increase catalytic activity. A major objective of nanocatalyst research is to create catalysts that have high selectivity, high activity, low energy consumption and a long lifetime by controlling the size, shape, surface composition and electronic structure.