This invention describes the synthesis and application of nanostructured copper (Cu) catalysts that selectively convert carbon dioxide (CO2) into carbon monoxide (CO). This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
The electrochemical CO2 reduction reaction (CO2RR) is an appealing strategy for addressing man-made CO2 emissions because it can leverage excess renewable energy to produce carbon-neutral chemicals and fuels. However, the economic viability of large-scale CO2RR systems will depend on the ability to selectively and efficiently form desirable products. Because it is earth-abundant and can produce a variety of products, Cu is a popular CO2RR catalyst. Unfortunately, the wide product distribution of Cu introduces inefficiencies in the form of chemical separation steps.
This invention describes a technology for separating liquid and solid phase substances from a gas stream. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
The removal and sequestration of carbon dioxide (CO2) from gas streams has been extensively researched, and many methods of separating CO2 have been proposed. These include adsorption monoliths, membrane absorption and cryogenic distillation, but such methods require special materials and/or high maintenance. Other state-of-the-art removal techniques, such as centrifugal stratification, compress CO2 into a liquid or solid phase, then remove it from the gas stream. But during removal, the liquid/solid phases travel through flow fields and their viscous heating effects. This causes the liquid/solid phases to re-vaporize, stymieing separation efforts.
This new Iron-based catalyst will enable a one-step process to produce hydrogen - a promising energy source that is also environmentally benign - by directly converting methane. The catalyst will eliminate the need to first create syngas and then remove carbon dioxide. In addition to creating hydrogen, carbon, which is also a useful commodity is created as a by-product. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
The traditional commercial methods of forming hydrogen from methane are based on steam methane reforming, coal or bio-mass gasification, electrolysis, and thermo-chemical processes. Some of these methods are cost-effective, but each requires that syngas first be created and the water gas shift reaction be used to convert syngas to hydrogen and carbon dioxide. From there, the hydrogen must be purified using pressure swing adsorption to separate the hydrogen for the carbon dioxide. Developing a method that avoids these intermediate steps would reduce the cost of producing valuable hydrogen.
This novel patent-pending methane conversion technology employees microwave-assisted catalysis for chemical conversion. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Natural gas, primarily composed of methane, is a cheap and abundant domestic resource that can be converted to a wide range of products including liquid transportation fuels and a wide range of chemical intermediates. However, traditional methods of converting methane to valuable chemicals first require it to be converted to synthesis gas.
A direct, one-step, method to convert the methane would have significant advantages over current indirect methods, including reduced costs and increased yields, but several technology barriers must first be overcome. Microwave-assisted catalyst reactions can provide a viable direct method for overcoming these barriers.
The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) developed designs, manufacturing processes, and corrosion property validations of new high-performance corrosion-resistant high-entropy alloys that are superior to and less expensive than existing alloys and demonstrate improved resistance to corrosion, including pitting corrosion in harsh environments and sea water.
Challenge
Metals and alloys used in sea water or acidic aqueous environments are prone to various forms of corrosion, including pitting and/or crevice corrosion because of the presence of aggressive salt, such sodium chloride (NaCl). Pitting and crevice corrosion can serve as initiation sites for developing cracks that will lead to catastrophic failures of the metallic components. The current solution to this problem is to coat the metals with nickel (Ni)-based superalloys such as Hastelloy® C276. Hastelloy®, which is very expensive.
This invention describes a system and method for detecting corrosion in natural gas pipelines using an optical platform or a wireless platform. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
The U.S. Energy Information Administration states that natural gas accounts for nearly 30 percent of energy consumption in the United States. More than 300,000 miles of natural gas transmission and gathering lines deliver this valuable energy source to consumers. Like any energy infrastructure, this network of pipelines requires significant maintenance costs. In the case of natural gas pipelines, corrosion accounts for around 25 percent of incidents over the last 30 years, 61 percent of which was caused by internal corrosion.
The corrosion-related annual cost for such incidents amounts to $6 to $10 billion in the United States each year. Therefore, a need exists to monitor corrosion inside of the gas pipelines to implement corrosion mitigation and control before any failure.
The innovation represents a BIAS particle sorbent suspended in a non-aqueous fluid carrier (slurry) that is capable of CO2 sorption, is easy to incorporate into established power plants, and can minimize energy and infrastructure requirements.
Challenge
Carbon sequestration can reduce the emissions of CO2 from large point sources and holds potential to provide deep reductions in greenhouse gas emissions. Amine-based solid sorbents are effective and economical agents for CO2 capture from gaseous mixtures. However, because of the high concentration of CO2 in many feed streams, a large quantity of the gas often reacts with the sorbent exothermically to produce excessive heat, which must be removed from the sorbent to prevent temperature instability within the reactor and to eliminate potential degradation of the sorbent. Reducing the damage to sorbents with this technology and method can increase efficiency and reduce replacement costs faced by industries.
Research is active on a method to convert methane into synthesis gas using mixed metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Natural gas (NG), which is composed primarily of methane, is one of the most abundant, low-cost carbon-containing feedstocks available. The economically available route to produce valuable chemicals from methane is via synthesis gas followed by different chemical routes to manufacture the desired chemicals. In a large-scale industrial plant, the production of syngas accounts for a large part of the total costs. Therefore, it is important to develop more efficient and cost-effective methods for the conversion of methane to syngas.
A patented technology invented at the U.S. Department of Energy’s National Energy Technology Laboratory enhances chemical looping combustion by providing tri-metallic ferrite oxygen carriers that offer greater durability and better reactivity than traditional oxygen carriers. Tri-metallic ferrite oxygen carriers also eliminate agglomeration issues, improve reduction rates, and offer similar costs when compared to traditional oxygen carriers, with convenient preparation using readily available materials. This technology is available for licensing and/or further collaborative research from NETL.
Research is active on a method to convert methane into synthesis gas using a mixture of metal oxides. The resulting syngas could be used to manufacture more valuable chemicals. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.