This patent-pending technology establishes a novel system and method for the microwave-assisted dry reforming of methane. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Traditional steam reforming of methane to produce hydrogen (H2), which is then reacted with carbon (CO) to produce methanol and other industrial commodity chemicals, is an extremely energy intensive process with large carbon footprint. For example, the steam reforming reaction produces 10 tons of carbon dioxide (CO2) for every ton of H2. Methane dry reforming uses an alternative reaction that uses CO2 as a soft oxidant to produce CO and H2 from methane, which can be further processed into methanol or hydrocarbons. Further, using CO2 to produce commodity chemicals, such as H2 and CO, can generate revenue to offset carbon capture costs, reduce the carbon footprint of fossil-fuel powered processes, and allow sustainable use of fossil fuel resources.
Traditional dry reforming techniques are extremely energy intensive and require very high temperatures (>800C) that make it unpractical economically compared with the lower-temperature, carbon-positive, methane steam reforming. Microwave-assisted catalysis has been demonstrated as an enabling technology to promote high temperature chemical processes. Unlike traditional thermal heating, microwaves can rapidly heat catalysts to extremely high temperatures without heating the entire reactor volume. This reduces heat management issues of conventional reactors and enables rapid heating/cooling cycles. Ultimately, this can allow reactors to utilize excess renewable energy on an intermittent basis (load follow) to promote traditionally challenging, thermally-driven reactions for on-demand chemical production.
Microwave absorption is a function of the electronic and magnetic properties of the material, and a properly designed catalyst may function as a both a microwave heater and a reactive surface for driving the desired reaction. Microwave absorption is extremely sensitive to the catalyst’s chemical state and electronic structure, and effective catalysts must maintain microwave activity across a wide range of temperatures in both oxidative and reductive environments.
This patent-pending technology establishes a novel system and method for laser induced breakdown spectroscopy (LIBS) applications. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Low-cost, efficient monitoring of remote locations has and continues to be highly sought in the industry. For example, drilling production or injection wells for oil/gas extraction or carbon dioxide (CO2) storage always has the potential for leakage into the surrounding formations and environment. The ability to measure the subsurface fluids in and around the injection/production area before and after subsurface activities becomes more important when there is a suspected leak. Current downhole monitoring systems rely on bulk parameters such as pH and conductivity. Lab based systems can provide trace element measurements of subsurface fluids but require fluids to be taken from the field and digested prior to measurement. A system that can provide trace element measurements in real time while deployed in the subsurface is potentially of great value.
Current diode pumped solid state (DPSS) laser systems used for laser induced breakdown spectroscopy applications in fluid system measurements have numerous limitations. First, the systems are susceptible to dimensional changes caused by temperature and pressure swings in fluctuating environments in downhole applications. A second issue is the size of the laser spark that is produced in the fluid for measurements affecting signal strength. The third issue is the efficient collection and transmission of the plasma emission for analysis.
This invention describes an improved method for extracting rare earth elements (REEs) from coal ash at ambient temperatures. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
As China currently controls the supply and prices of almost all the world’s REEs, developing a domestic supply is critical for the continued manufacturing of technologies that support nearly all modern devices, including critical systems for energy and national defense. REE extraction efforts from domestic sources of coal and coal-related resources have emerged as a viable solution, but successful methods must be both cost-effective and environmentally friendly.
Current methods and technologies for REE extraction from ore and other sources can be hazardous and expensive to implement without harming the environment or workers. For example, common practices employ high temperatures and strong acids or bases. This technology seeks to overcome these and other issues with current REE extraction methods by turning to a material that is currently viewed as a waste – coal ash.
These technologies are high-performance CO2 separation membranes made from polyphosphazene polymer blends. NETL’s technology was originally developed to aid in separating CO2 from flue gas emitted by fossil-fuel power plants. The NETL membrane is cross-linked chemically using low intensity UV irradiation, a facile technique that improves the membrane’s mechanical toughness compared to its uncrosslinked polyphosphazene constituents. Membranes fabricated with this technique have demonstrated permeability of up to 610 barrer, with CO2/N2 selectivity in excess of 30, at a practical separation temperature of 40°C. NETL’s patent-pending technology is being bundled with Idaho National Laboratory’s (INL) patented technology, with NETL handling licensing. NETL would work with a potential licensee and INL to license the technology.
Challenge:
Membrane-based separation is one of the most promising solutions for CO2 removal from post-combustion flue gases produced in power generation. Technoeconomic analyses show that membranes aimed for this application must possess high gas permeability; however, most high permeability materials suffer from poor mechanical properties or unacceptable loss in performance over time due to physical aging. This technology is a successful attempt to turn one of these high-performance materials with poor mechanical properties into one amenable for use in practical separation membranes with virtually no physical aging issues.
This invention describes basic immobilized amine sorbents (BIAS) with improved pelletization process and formulation for use in CO2 capture processes. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
BIAS sorbents demonstrate high CO2 capture capacity and thermal stability over multiple steam regeneration cycles and represent a promising approach for CO2 removal from a variety of source points, including coal and natural gas combustion power plants. Bench- and pilot-scale testing have demonstrated the feasibility of commercial-scale BIAS sorbents. However, full commercialization of BIAS sorbents requires pelletization. Commercially available silica typically serves as the support for amine-based particle sorbents, yet these materials are not commercially feasible due to their relatively low mechanical strength and difficult management in dynamic reactor systems. Thus, the development of an economical method of fabricating a strong silica-supported BIAS pellet is a primary concern.
This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.
The invention is a new low-cost way to form an optical sensor array that monitors multiple parameters such as temperature and hydrogen in essential components of electrical transmission and distribution networks. It uses multi-wavelength interrogation combined with multiple sensor elements using a single optical fiber. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Power transformers are among the most essential components of electrical transmission and distribution networks. To avoid the substantial financial and social expenses caused by catastrophic failures, there is a growing need to develop low-cost and real-time analytical techniques and instruments to detect and diagnose fundamental changes in the operating characteristics of transformers. Key parameters, such as dissolved gases content and temperature, provide valuable information for assessing the condition of transformers. For example, dissolved gas analysis (DGA) identifies electrical or thermal faults in transformers. In addition, temperature information is vital because when the temperature in transformers exceeds 90o C, the aging rate of insulation and tensile strength grows, resulting in a dramatic deterioration of transformer life expectancy. It is therefore of significant value to monitor the temperature under various ambient and loading conditions to identify failures before they result in significant damages.
This patented technology establishes a novel method for concentrating rare earth elements (REEs) within coal byproducts to facilitate extraction processes. The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
REEs are essential components of modern technological devices, such as cell phones and computer hard drives, that support a broad range of vital industries. China provides the bulk of the world’s supply, largely due to environmental and economic challenges associated with extraction. Coal resources used in energy, iron, and steelmaking operations contain quantities of REEs sufficient to meet U.S. needs for years to come, but not as enriched solids. Cost-effective technology that facilitates the recovery of REEs in their most useful form offers the potential to simultaneously boost America’s economy, national security, and independence.
The invention is a method for sensing the H2 concentration of a gaseous stream through evaluation of the optical signal of a hydrogen sensing material comprised of Pd- or Pt-based nanoparticles dispersed in a matrix material. The sensing layers can also include engineered filter layers as the matrix or as an additional layer to improve H2 selectivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
The ability to selectively sense H2 is critically important for a broad range of applications spanning energy, defense, aviation, and aerospace. One of the most significant needs is for sensors that are capable of leak detection of H2 at levels up to the lower explosive limit. Additional applications of hydrogen sensors requiring operation at elevated temperatures include monitoring of hydrogen in metallurgical processes as well as monitoring the composition of fuel gas streams in power generation technologies such as gas turbines and solid oxide fuel cells. Measurements of H2 levels dissolved in transformer oil can also enable condition-based monitoring to provide early detection of potential failures with large associated economic and environmental impacts.
The invention is a system and method for monitoring the interior of metallic tubular structures like pipelines, well-bores, and boiler-tubes using an integrated wireless system. The technology uses a combination of the pipe or tubular structure as a wave guide, integrated radio frequency (RF) patch antennas, integrated passive surface acoustic wave (SAW) sensors, and data analytic methodologies. The technology is available for licensing from the U.S. Department of Energy’s National Energy Technology Laboratory.
Challenge
Safety and longevity are major concerns in fossil fuel industries and other technologies that use long metallic tubular structures like gas pipelines, well-bores, and boilers. Real time monitoring of the tubular structures for multiple variables within them, including but not limited to corrosion, leaks, and mass flow, is crucial to ensure safety and cost-effective maintenance in timely manner. Conventional techniques for investigating the state-of-health and operational conditions of tubular structures use non-destructive acoustic-based techniques, which are limited by the ability to interpret the data because, as an indirect measurement, requires models to be made of the infrastructure under investigation.