Back to Top
Skip to main content
 
 
 

Available Technologies

Title Sort descending Date Posted Patent Information Opportunity
A Unique Split Laser System for Environmental Monitoring USPN 7,421,166; USPN 8,786,840; USPN 8,934,511; USPN 9,297,696; USPN 9,548,585

Researchers at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) have developed a novel split laser system for in situ environmental monitoring via Laser Induced Breakdown Spectroscopy (LIBS) or Raman analysis.  The design features fiber-coupled, optically-pumped, passively Q-switched lasers that are small, portable, low cost and robust enough for even downhole applications.  The technology can be used in a wide array of applications, including, but not limited to, carbon dioxide (CO2) monitoring for CO2 sequestration, oil and gas monitoring, and water analysis (groundwater and municipal systems).  The technology is available for licensing and/or further collaborative research with NETL.

Proof of concept experimentation has been completed. NETL researchers are continuing to design miniaturized lasers and optical delivery systems to allow further size and cost reductions. The researchers have identified the need to complete and demonstrate both single point and multipoint measurement prototypes.  The results would further validate the technology and expedite its deployment to the private sector. 

Allyl-Containing Ionic Liquid Solvents for Co2 Capture USPN 9,975,080

Research is active on the technology titled,“Sulfur Tolerant Ionic Liquid Solvent for Pre-combustion Carbon Capture.” This invention is available for licensing and/or further collaborative research from U.S. Department of Energy’s National Energy Technology Laboratory.

Application of Oxide Dispersion Strengthening Coatings for Improved Transpiration Cooling USPN 9,579,722

Research is active on the development and incorporation of oxide dispersion strengthening (ODS) coatings for use in gas turbine component cooling applications. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Blended Polymer for Gas Separation Membranes U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a new high performance microporous polymeric blend for carbon dioxide (CO2) gas capture and separation applications. This invention is available for licensing and/or further collaborative research from NETL.

Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas USPN 8,920,526

Research is active on the patented technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Chromia Refractory Brick with Carbon Treatment for Resistance to Slag Penetration in Gasifier Environments USPN 9,598,318

Research is active on the development of a chromia refractory brick composed principally of Cr2O3, Al2O3, and carbon deposits for operation in the slagging environment of a gasifier operating at temperatures between 1250°C and 1575°C, pressures between 300 and 1000 psi, and oxygen partial pressures between 10-4 and 10-10. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). 

Computational and Simulation-Based Tools for Drilling Optimization U.S. Patent Pending

Research is active on the patent pending technology titled, “MSE-Based Drilling Optimization Using Neural Network Simulation.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Conducting Metal Oxides Integrated With Surface Acoustic Waves (SAW) Sensors For Use In Harsh Environments U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) has developed a method for achieving tunable gas sensitivity of surface acoustic wave (SAW) devices. The innovation implements a class of materials with tunable absolute film conductivities called conducting metal oxides (CMOs), which enables SAW devices to be calibrated for gas sensitivity in diverse harsh-environment conditions.

Constant Pressure High Throughput Membrane Permeation Testing System USPN 8,821,614

A simple and rapid method for the screening of the permeability and selectivity of membranes for gas separation has been developed. A high throughput membrane testing system permits simultaneous evaluation of multiple membranes under conditions of moderate pressure and temperature for both pure gases and gas mixtures. The modular design, on-line sample analysis, and automation-competence of the technology provides a cost-effective approach to identify the optimal membrane for a given gas separation application. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Control of Slag Chemistry for the Reduction of Viscosity and Refractory Corrosion USPN 8,703,021

Research is active on the technology, titled "Basic Refractory and Slag Management for Petcoke Carbon Feedstock in Gasifiers." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.