Back to Top
Skip to main content
 
 
 

Available Technologies

Title Sort descending Date Posted Patent Information Opportunity
Metal-organic Framework Films for Gas Sensor Applications U.S. Patent Pending

This invention describes a system and method for rapid, ambient-temperature growth of metal-organic framework (MOF) films for gas sensor applications. More specifically, the invention relates to growth of MOF films on advanced sensor devices such as distributed optical fiber and passive wireless like surface acoustic wave-based sensors. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

MOF thin films have emerged as particularly attractive candidates for gas sensing applications due to their tunable porosity and pore size, enabling them to be rationally designed to selectively absorb specific gasses of interest. MOFs are especially appealing due to their high selectivity and capacity for energy-relevant gasses such as carbon dioxide and methane. A critical step towards the development of MOF thin film devices is the ability to efficiently and reliably incorporate high-quality MOF layers onto a wide range of substrates like optical fibers. However, current techniques are often inconvenient due to long reaction times, heating requirements, equipment costs and/or poor control over crystal coverage and morphology.

Method for Determining Solids Circulation Rate USPN 8,116,992

Research is currently active on the patented technology "Method for Determining Solids Circulation Rate." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles USPN 7,992,718

Although research is currently inactive on the patented technology "Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles," the technology is available for licensing from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Disclosed in this patent is a method of particle separation from a feed stream comprised of particles of varying hydrophobicity by injecting the feed stream directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. The current invention allows the height of the feed stream injection and the reflux ratio to be varied to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions or other considerations. This novel method provides a high degree of particle collection with reduced carryover of lower hydrophobic or hydrophilic particles to the froth overflow, reduces or eliminates reliance on a clean wash-water supply, allows capture of coarse particles beyond the upper limiting size for liquid injection columns, allows capture of fine particles while mitigating the tendency of the low inertia particles to follow bubble streamlines and avoid capture, and provides other benefits over previously used methods of capture.

Method for Regeneration of Immobilized Amine Sorbents for Use in CO2 Capture (the BIAS Process) USPN 8,500,854; USPN 8,834,822

Research is currently active on the following and patented technologies:

  • "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture", known as the Basic Immobilized Amine Sorbent (BIAS) process
  • "Regenerable Sorbent Technique for Capturing CO2 Using Immobilized Amine Sorbents"

These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Method of Detecting Leakage from Geologic Formations Used to Sequester CO2 USPN 7,704,746

The Department of Energy’s National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,704,746 titled "Method of Detecting Leakage from Geologic Formations Used to Sequester CO2."

Disclosed in this patent is a method to measure carbon dioxide leakage from sequestration reservoirs and, specifically, an enhanced method for the detection and quantification of carbon dioxide leaks from geologic formations. The method injects tracers along with the carbon dioxide, monitors leakage with gas chromatography, and provides early detection of leakage by measuring the leakage rates of other gases within the geologic formation.

Method to Generate Oxygen-Rich Gas from Air Using Water USPN 9,878,280

Research is active on the technology titled, "A Method of Generating O2-rich Gas from Air Using Water." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment USPN 9,181,597; USPN 9,556, 503

Research is active on the development and refinement of metallurgical processes for improving alloy performance under extreme operating conditions found in fossil energy power plants. These inventions are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts USPN 8,142,756

Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Microwave Diagnostics and Passive Sensors for Pipeline, Well-Bore, and Boiler-Tube Monitoring U.S. Patent Pending

The invention is a system and method for monitoring the interior of metallic tubular structures like pipelines, well-bores, and boiler-tubes using an integrated wireless system. The technology uses a combination of the pipe or tubular structure as a wave guide, integrated radio frequency (RF) patch antennas, integrated passive surface acoustic wave (SAW) sensors, and data analytic methodologies. The technology is available for licensing from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Safety and longevity are major concerns in fossil fuel industries and other technologies that use long metallic tubular structures like gas pipelines, well-bores, and boilers. Real time monitoring of the tubular structures for multiple variables within them, including but not limited to corrosion, leaks, and mass flow, is crucial to ensure safety and cost-effective maintenance in timely manner. Conventional techniques for investigating the state-of-health and operational conditions of tubular structures use non-destructive acoustic-based techniques, which are limited by the ability to interpret the data because, as an indirect measurement, requires models to be made of the infrastructure under investigation.

Mixed Matrix Membranes with Improved Gas Separation Properties USPN 9,597,643

Research is active on the technology titled, "Surface Functionalization of Metal Organic Frameworks for Mixed Matrix Membranes." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.