Back to Top
Skip to main content
 
 
 

Available Technologies

Title Sort descending Date Posted Patent Information Opportunity
Encapsulation Method for More Durable Reactive Materials U.S. Patent Pending

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.

Energy Infrastructure Monitoring using Conformal Coaxial Helical Antennas and Distributed Electromagnetic Interrogation Schemes U.S. Patent Pending

The invention is a distributed radio frequency (RF) /electromagnetic (EM) interrogation scheme that leverages distributed antennas along a coaxial cable for subsurface, pipeline, and other energy infrastructure monitoring. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge: 
In industrial and wireless sensing, the communication channel often determines the characteristics and performance of the overall sensing network. For wellbore monitoring applications, telemetry challenges are acute because of harsh environmental conditions (elevated temperature and pressure, chemical corrosives) which restrict the application of complex electronics and instrumentation. In addition, inherent absorption of electromagnetic radiation within the subsurface environment limits the potential for free space wireless power and signal delivery over distances. However, distributed wireless sensors throughout the subsurface environment could provide unprecedent visibility for monitoring and minimizing environmental impacts associated with the wellbore and ensure safe and productive operation of oil and gas recovery processes, enhanced geothermal systems and carbon storage sites.  Similar needs exist for monitoring of natural gas pipelines and other energy infrastructure for which enhanced visibility can significantly impact reliability, resiliency, and security. 
 

Fiber Optic-Based pH Sensing In Aqueous Subsurface Environments USPN 9,975,080; Patent Pending

Research is active on the patent pending technology titled, “Plasmonic-Based pH Sensors in Aqueous Environments.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Gas Sensing System Employing Raman Scattering USPN 8,674,306

The Department of Energy’s National Energy Technology Laboratory (NETL) is seeking collaborative research partners and/or licensees interested in implementing a patented gas sensing system technology. The patent is jointly owned by NETL and the University of Pittsburgh, with the University handling the licensing.  NETL would work with a potential licensee and the University to license the technology.

Described in this patent is a gas analyzing sensor that characterizes gaseous fuel, exhaust gases, or other process gas streams. The sensor reports concentrations of all majority gases to 0.1% in 1 second or less, and can be used for real-time gas analysis and system control. The sensor relies on novel techniques to enhance usually weak spontaneous Raman emissions from the gases being sampled, enabling the application of Raman spectroscopy to rapid gas analysis. The invention provides a gas composition measurement system that is fast, accurate, cost effective, and capable of continuously measuring the concentrations of gases in a mixture such as natural gas, at elevated system pressures.

Heat Recirculating Cooler for Use in Fuel Gas Sulfur Removal USPN 7,442,353

Research is currently inactive on the patented technology titled, "Heat Recirculating Cooler for Fluid Stream Pollutant Removal.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

High Capacity Immobilized Amine Sorbents USPN 7,288,136

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 titled "High Capacity Immobilized Amine Sorbents."

Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO2) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO2 capture systems.

High Efficiency Electrocatalytic Conversion of CO2 to CO USPN 9,139,920

Research is in progress on the development of ligand-protected gold (Au25) cluster nanocatalysts for the electrocatalytic conversion of carbon dioxide (CO2) to carbon monoxide (CO). A few technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

High Speed Particle Image Velocimetry USPN 8,391,552

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing U.S. Patent No. 8,391,552 titled "Method of Particle Trajectory Recognition in Particle Flows of High Particle Concentration Using a Candidate Trajectory Tree Process with Variable Search Areas.

High-Performance Corrosion-Resistant High-Entropy Alloys U.S. Patent Pending

The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) developed designs, manufacturing processes, and corrosion property validations of new high-performance corrosion-resistant high-entropy alloys that are superior to and less expensive than existing alloys and demonstrate improved resistance to corrosion, including pitting corrosion in harsh environments and sea water.

Challenge
Metals and alloys used in sea water or acidic aqueous environments are prone to various forms of corrosion, including pitting and/or crevice corrosion because of the presence of aggressive salt, such sodium chloride (NaCl). Pitting and crevice corrosion can serve as initiation sites for developing cracks that will lead to catastrophic failures of the metallic components. The current solution to this problem is to coat the metals with nickel (Ni)-based superalloys such as Hastelloy® C276. Hastelloy®, which is very expensive.

High-Temperature Sensors for Monitoring and Control of Solid Oxide Fuel Cells U.S. Patent Pending

Research is active on the application of embedded optical fiber based sensors to an operational solid oxide fuel cell (SOFC) in conjunction with high-temperature stable distributed interrogation approaches to allow for local monitoring of the absolute value and spatial gradient of the chemical composition and temperature of an anode or cathode stream.