Back to Top
Skip to main content

Twitter Icon Linkedin Icon Facebook Icon Instagram Icon You Tube Icon Flickr Icon

Available Technologies

Title Date Posted Sort descending Patent Information Opportunity
Nano-Structured Nobel Metal Catalysts for Hydrocarbon Reforming USPN 9,132,416

Research is active on the patent pending technology, titled "Nano-Structured Nobel Metal Catalysts Based on Hexametallate Architecture for the Reforming of Hydrocarbon Fuels." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Metal Oxide Promoters for Improving the Reactivity and Capacity of Oxygen Carriers for the Chemical Looping Combustion Process USPN 8,807,988

This technology, titled "Metal Oxide Promoters for Improving the Reactivity and Capacity of Oxygen Carriers for the Chemical Looping Combustion Process,” provides a mixed metal oxide carrier to improve the oxygen transfer capacity and reactivity of existing carriers. Following patent approval, the technology will be available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Constant Pressure High Throughput Membrane Permeation Testing System USPN 8,821,614

A simple and rapid method for the screening of the permeability and selectivity of membranes for gas separation has been developed. A high throughput membrane testing system permits simultaneous evaluation of multiple membranes under conditions of moderate pressure and temperature for both pure gases and gas mixtures. The modular design, on-line sample analysis, and automation-competence of the technology provides a cost-effective approach to identify the optimal membrane for a given gas separation application. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment USPN 9,181,597; USPN 9,556, 503

Research is active on the development and refinement of metallurgical processes for improving alloy performance under extreme operating conditions found in fossil energy power plants. These inventions are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Control of Slag Chemistry for the Reduction of Viscosity and Refractory Corrosion USPN 8,703,021

Research is active on the patent pending technology, titled "Basic Refractory and Slag Management for Petcoke Carbon Feedstock in Gasifiers." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Novel Reactor Design for Solid Fuel Chemical Looping Combustion USPN 9,004,911

Research is active on the patent pending technology, titled Apparatus and Method for Solid Fuel Chemical Looping Combustion. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Spheroid-Encapsulated Ionic Liquids for Gas Separation USPN 9,050,579

An innovative approach has been developed allowing the use of high viscosity for gas separations. The method involves the encapsulation of ionic liquids (ILs) into polymer spheroids, taking advantage of the gas-absorbing properties and cost-effectiveness of ILs, while circumventing known IL viscosity issues. Significantly, the process permits optimization or ‘tuning’ of the IL-containing spheroids for specific gas separation applications. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis USPN 9,150,476; USPN 9,598,644

This technology provides an advantageous means to convert syngas into a class of chemicals known as higher oxygenates, as well as other long-chain hydrocarbons. Research is currently active on this patent pending technology "Method of CO and/or CO2 Hydrogenation Using Doped Mixed Metal Oxides." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Separation of CO2 From Multi-Component Gas Streams USPN 8,771,401

Research is active on the patented technology, titled "Apparatus and Process for the Separation of Gases Using Supersonic Expansion and Oblique Shock Wave Compression.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Hybrid Process for Post-Combustion CO2 Capture U.S. Patent Pending

Research is active on the patent pending technology titled, "Method for the Separation of a Gaseous Component Using a Solvent-Membrane Capture Process.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.