Back to Top
Skip to main content
NETL Logo

Y-Han-OSU-Transformational-Membranes.pdf

Transformational Membranes for Pre-combustion Carbon Capture – DE-FE0031635 Yang Han and W.S. Winston Ho William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University Pre-combustion Carbon Capture Scalable Membrane Synthesis Techno-economic Analysis Gasifier & Quench Air Separation Air N2 Vent O2 Coal Slag Heat Recovery Particulate Removal Water Gas Shift Steam Syngas Cooling H2S Removal Sulfur Recovery Sulfur CO2 to Storage CO2 Compression Membrane Water Combustion Turbine Air Electricity H2 as Fuel Gas Heat Recovery Steam Turbine Electricity Steam Flue Gas Power Block Separation Block Membranes for CO2/H2 Separation Facilitated Transport Membrane Challenges • 90% CO2 recovery • >95% CO2 purity • >99% H2 recovery • Permeability/selectivity trade-off • More permeable → small footprint • More selective → low H2 loss (Han & Ho, Chinese J. Chem. Eng. (2018)) • Facilitated transport of CO2 via reversible reaction with amine CO2 + R-NH2 + H2O → R-NH3+ + HCO3- • Facilitated transport = flux augmentation via reaction Nanoporous polysulfone • Highly permeable • Mechanically robust ≈ ≈ ≈ Nonwoven fabric Selective Layer 15 – 25 µm CO2/H2 Separation Properties Single-Stage Membrane Process Features • CO2 partial pressure affects CO2 permeance • Optimizable composition for different CO2 partial pressure ranges • >100 CO2/H2 selectivity → >99.4% H2 recovery • 3 – 7 H2S/CO2 selectivity → Simultaneous H2S removal CO2 Partial Pressure Change and Membrane Allocation Effect of Feed Pressure Effect of CO2 Permeance Effect of Membrane Cost Effect of H2S/CO2 Selectivity T