Back to Top
Skip to main content
 
 
 
Microwave Catalysis for Process Intensified Modular Production of Carbon Nanomaterials from Natural Gas
Project Number
DE-FE0031866
Last Reviewed Dated
Goal

The objective of this project is to develop a cost effective, process intensified modular technology for the conversion of flare gas (methane, ethane and C3+ alkanes) to carbon nanotubes (CNTs) and carbon fibers (CNFs). This will be accomplished through the exploitation of microwave-specific effects on the catalytic pyrolysis of natural gas. The use of microwaves to drive this reaction has been clearly demonstrated to make the conversion of natural gas by this process both kinetically and energetically favorable at lower temperatures. The technology development is focused on single-step conversion of methane to crystalline CNTs and fibers to demonstrate great scalability of production and recovery of the valuable solid carbon.  Specifically, this approach integrates microwave reaction chemistry into the modular reactor design with the goal to achieve energy and capital efficiency comparable or better than large commercial unit operation. Major focus will be on the application of process intensification at modular component scales with the objective of deployment at flare gas locations, particularly, at a pilot demonstration unit.  A modular component having a large turndown ratio which can operate under varying feed rate and composition will be demonstrated. It is anticipated that the technology readiness level (TRL) will be increased from TRL 4 to 5.

Performer

West Virginia University Research Corporation – Morgantown, WV 26506
North Carolina State University – Raleigh, NC 27695
H Quest Vanguard – Pittsburgh, PA 15238
Pacific northwest National Laboratory – Richland, WA 99352
C4-MCP LLC – Santa Monica, CA 90404
 

Background

Over 200 billion ft3/year of natural gas at remote production sites is rejected via flaring in the U.S due primarily to the limitations in pipeline transportation capacities or fluctuation in the well production rate. This is a significant waste of valuable resources and unrealized profit. A process intensified modular unit appears to be promising in converting flared gas to value-added solid carbon and hydrogen. The modular equipment will be able to be deployed and transported between remote locations.

The technology is based on microwave-enhanced, multifunctional catalytic system to directly convert the light components of stranded natural gas. Specifically, the approach integrates microwave reaction chemistry into the modular reactor design with the goal to achieve energy and capital efficiency comparable or better than large commercial unit operation. Major focus will be on the application of process intensification at modular component scales with the objective of deployment at flare gas location. Particularly, the project will demonstrate the modular component having a large turndown ratio which can operate under varying feed rate and composition at stranded natural gas locations.

Impact

Successful completion of this project will provide a scientific basis and methodology for the production of carbon nanotubes and carbon nanofibers from stranded natural gas. The carbon nanotubes and fibers can be used in polymers, plastics, batteries and electrodes for electric arc steel making. This process, if successfully developed and deployed, will reduce the volume of natural gas being flared to the atmosphere, thereby having a positive effect on the environment.

The technology will open a new way for converting stranded natural gas to value added solid carbons. The development of natural gas conversion to CNTs and CNFs, will boost the economic infrastructure of the regions which is vital to the future economy. The produced carbon can be sold as a co-product, thus providing an economic credit that reduces the delivered net cost of hydrogen. The CNTs and CNFs are high-value products used in polymers, plastics, batteries, carbon composites and electrodes, having attractive properties such as electrical conductivity, high tensile strength, high thermal stability, and chemical stability.

Accomplishments (most recent listed first)

The project started on March 20, 2020.

Current Status

Currently, catalyst synthesis and microwave reactor installation have started. In the first six months, different catalyst formulations and synthesis protocol will be developed. Specifically, microwave sensitive, supported and unsupported catalyst systems will be synthesized and tested. Catalytic performance tests in fixed frequency and variable frequency microwave reactors are being carried out. Process simulation and TEA models are being built, and the models will be updated throughout the entire project duration.

Project Start
Project End
DOE Contribution

$2,999,991.00

Performer Contribution

$791,221.00

Contact Information

NETL – Gary Covatch (Gary.Covatch@netl.doe.gov or 304-285-4589)
West Virginia University Research Corporation – Jianli (John) Hu (John.Hu@mail.wvu.edu or 304-293-5067)