LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies.
HYDROLOGIC MEASUREMENTS
Relatively little research has been done to experimentally determine permeability (a measure of the resistance to fluid flow through a medium) in hydrate-bearing sediments (HBS) or relative permeability (the effect of another phase that interferes with flow) in a three phase—hydrate/water/gas—system where the hydrate habit (how the hydrate occupies space) is not well understood. The presence of hydrate in the pore space will hinder flow and alter the gas/water capillary pressure, affecting the relative amounts of each phase present in the pore space. Numerical models account for relative permeability in a hydrate/water/gas system based on estimations and idealizations; however, these estimations are not currently based on measurements.
LBNL is performing experimental tests to provide data that will allow for numerical inversion of relative permeability relationships. In performing these inversions, LBNL has found that unique relative permeability functions have not been obtainable without knowledge of how hydrate affects capillary pressure functions. In hydrate-bearing porous media, pore geometry, surface wettability, interfacial tension, and fluid phase saturations affect capillary pressure. LBNL has developed a technique to continuously measure gas/water capillary pressure in hydrate-bearing porous media, and is making measurements to understand this important effect.
GEOMECHANICAL/GEOPHYSICAL MEASUREMENTS
It is important to understand the effect of hydrates on the geomechanical strength of hydrate-bearing sediments because offshore oil and gas development requires placement of equipment on the seafloor. The strength of the sediments will change with the amount of hydrate present, and the relationship between sediment strength and hydrate abundance is poorly understood. Numerical simulators have been constructed that can compute the effects of hydrate formation or dissociation on sediment strength, but they depend on measurements of these strength parameters.
LBNL is performing tests on samples containing methane hydrates in order to better understand and measure the geomechanical behavior of oceanic HBS as they undergo thermo-mechanical changes. Concurrent x-ray computed tomography (CT) scanning to quantify sample uniformity and observe failure modes, and geophysical (acoustic) property measurements are being made in an attempt to relate the stress in the samples to field measureable properties.
SYNTHETIC HYDRATE FORMATION STUDIES
LBNL is developing, testing, and refining concepts and techniques for the formation of hydrate bearing samples for laboratory use and testing that are more representative of naturally occurring hydrate-bearing sediments.
IMPACT OF THIS RESEARCH
Primary benefits of this lab-based research are improved empirical relationships between experimental and theoretical relative permeability, which will result in improvements to hydrologic and reservoir engineering applications, and determination of the envelope of HBS stability under conditions typical of those associated with the construction and operation of offshore platforms.