Back to Top
Skip to main content
NETL Logo

United Technologies Research Center will design, fabricate, and test high-pressure turbine vanes that use a novel combination of monolithic ceramics and ceramic matrix composites to increase component efficiencies within the turbine hot section and provide key building blocks for a 65 percent efficient system. The design will use an environmental barrier coating (EBC) to provide long term resistance to residues that make it past syngas filtration systems. By using low cooled ceramics to replace highly cooled superalloy vanes, a fraction of core flow typically utilized for cooling will be retained. The retained cooling air will then be used to increase efficiency by increasing temperatures that reach high-pressure turbine blades and increase turbine exhaust temperatures. This will further drive steam bottoming cycle efficiencies in combined cycle systems, regardless of fuel type.

image_plp
Utilize monolithic ceramic outer layer to bear long term creep load at temperatures up to 2700°F
plp_DOD_share
Off
Principal Investigator
John Holowczak
holowcje@utrc.utc.com
Project Benefits

The NETL Advanced Turbines Program is focused on the research, development, and demonstration (RD&D) of revolutionary, near-zero-emission advanced turbines technologies intended to enable cost-competitive, fossil-based power generation with lower emissions including CO2. Projects within the Advanced Turbines Program are focused on addressing significant scientific and engineering challenges associated with meeting increasing demands on turbine technology when using hydrogen fuels derived from coal as well as pursuing new and promising turbine technologies and turbine-based power systems. Program and project emphasis is on understanding the underlying factors affecting combustion, aerodynamics/heat transfer, and materials for advanced turbines and turbine-based power cycles.

Project ID
FE0031622
Website
United Technologies Research Center
http://www.utrc.utc.com/