A wide variety of methods are employed to detect natural gas pipeline leaks, ranging from manual inspection using trained dogs, to advanced, satellite based, hyper-spectral imaging. These methods can be classified as non-optical and optical methods. The primary non-optical methods include acoustic monitoring, gas sampling, soil monitoring, flow monitoring, and software-based dynamic modeling. Optical methods of leak detection can be classified as either passive or active. Passive methods capture electromagnetic radiation reflected or emitted from the area being imaged, while active methods illuminate the area with a laser or broad band source and record the result. Multi-spectral imaging (MSI) is a passive optical remote sensing approach that records data from multiple portions of the spectrum (e.g., ultraviolet, infrared and visible). The combination of multiple images can be used to identify items that might otherwise escape detection. Hyper-spectral imaging (HSI) creates a larger number of images from contiguous regions of the spectrum, typically with much finer resolution.
If a laser is used to illuminate the area above a pipeline, the absorption or scattering caused by natural gas molecules above the surface can be monitored using an array of sensors at specific wavelengths. If there is significant absorption or scattering above a pipeline, then a leak can be presumed to exist. The basic techniques for such active monitoring techniques include: Tunable Diode Laser Absorption Spectroscopy (TDLAS), Laser Induced Fluorescence (LIF), Coherent Anti-Raman Spectroscopy (CARS), Fourier Transform Infrared Spectroscopy (FTIS), and evanescent sensing.
The design of a laboratory scale multi-spectral scanner for detecting natural gas leaks in pipelines is underway. Experimental prototype (“breadboard” testing of the printed circuit board (PCB) design has been completed and the PCB’s have been designed. Mechanical parts for the scanner are being fabricated and development of the data acquisition board programming is ongoing. Once the design and fabrication of the multi-spectral scanner is complete, the scanner will be tested under laboratory conditions using simulated natural gas leaks. Radiation emission intensity will be evaluated at a minimum of three wavelengths. Based on the results of the laboratory testing, a portable, field deployable prototype multi-spectral scanner will be designed and fabricated. This will incorporate, at a minimum, the following components: scanner, optics, three element sensor, printed circuit board, LCD display unit, and battery pack. Following the construction of the prototype, field tests will be conducted to validate the operation and performance of the multi-spectral scanner. These tests will be conducted on live gas pipelines at sites to be identified by En-Urga and will be conducted under conditions that clearly demonstrate the ability of the scanner to detect actual natural gas pipeline leaks.