- Fabricated two prototype mud-pulse 195ºC MWD tools,
- Tested two MWD strings for functional capability in an oven at 195ºC;
- Conducted a field test of a prototype 195ºC MWD tool at well temperatures up to 140-180ºC;
- Tested an ELCON hybrid chip with processor, clock, and memory in a custom package for 700 hours at 200ºC;
- Conducted a study of thermoelectric cooling of downhole electronics and a successful cooling test;
- Encouraged an outside source to develop lithium/magnesium high-temperature batteries (operating temperature of 125 to 215ºC) ;
- Due to the extensive testing required and the high percentage of failing components, use of a binning qualification process to build high-temperature (195ºC) MWD tools is cost-prohibitive;
- Results of this development effort showed that, while it is possible to build a mud-pulse MWD tool that can operate at 195ºC, performance of the current tool is probably not sufficient for commercial success;
- Increasing the operating temperature of current MWD tools to 195ºC and above will require development of a new platform for the electronics used in these tools. This new platform will be based on silicon-on-insulator (SOI) components. There are several hindrances to the development of SOI tools for the MWD industry. Most are economic, rather than technological, factors;
- DOE leadership and partnership with industry can play a significant role in encouraging the development of high-temperature MWD tools to prepare for the future; and
- A critical leadership role for the DOE is to convince industry that future gas reserves will be produced from high-temperature reservoirs.
The field test of the two prototype 195ºC MWD tools was conducted in Lavaca County, Texas. The purpose of this operation was to provide directional services on a sidetrack of a straight hole designed to intersect the producing formation up-dip and above the water/gas interface. Although the MWD tool pulsers failed downhole in both tools, failure of the pulsers was determined to be from mechanical rather than electrical causes.
In the early stages of the project, Halliburton was successful in finding several components that demonstrated improved high-temperature performance. A major concern at the onset of the project was the performance of the microprocessor and memory chips. Halliburton located a hybrid chip manufactured by ELCON Technology of Phoenix, Arizona, that was successfully tested at 200ºC for over 700 hours. However, since the chip did not fit Sperry Sun’s configuration, it was not considered in subsequent development.
Halliburton also managed analytical and experimental research on an active cooling system for a MWD tool. APS Technology developed an analytical model to simulate cooling of a MWD system and a dummy board, using resistance heating to simulate electrical components. Thermoelectric coolers (TEC) were used to remove heat from within a pressure barrel containing the dummy MWD board assembly, which was operated in an oil bath. The oil bath represented fluids in a hot well just as the dummy board represented the heat generated by MWD components. Results indicated that the TEC could keep the board cool in wells that are 195ºC, but would consume considerable electrical power; thus requiring the use of a turbine generator. This would increase both the cost and size of the tool while decreasing its operating flexibility.
One of this project’s achievements was an overall improvement in Sperry Sun’s current MWD tool as a direct result of work performed under this project. Several improvements were implemented in “O” ring selection, oil selection, and other areas of the pulser component’s design. Work on the magnetometer resulted in upgrades to the design of Sperry Sun’s existing magnetometers. Software changes that were required in the downhole code and tool programming code provided another opportunity to improve the robustness of the downhole tool string. These improvements have resulted in longer life and a more robust MWD tool at the previous temperature rating of 175ºC, as well as at higher temperatures.
Sperry-Sun’s analysis of the economics of the 195ºC tool highlights the greatest obstacle to future commercialization. The cost to temperature-screen individual components, subassemblies, and completed tools for high-temperature operations are very high. At the same time, high-temperature tools enjoy a relatively short life – on the order of 300 hours. This translates into a daily cost that is three to five times more than that of a conventional tool.
Increasing the operating temperature of current MWD tools to 195ºC and above will require development of a new platform for the electronics used in these tools. DOE leadership and partnership with industry can play a significant role in encouraging the development of high-temperature MWD tools to prepare for the future.