The Gulf of Mexico and mature onshore fields contain many gas wells rendered uneconomic because the depleted reservoir pressure cannot overcome the weight of fluid in the wellbore. In many cases these gas reservoirs have considerable remaining gas-in-place but lack cost-effective methods to produce them. The artificial lift system being developed in this project is expected to provide a low-cost way to dewater wells and increase gas production. Development of this technology will allow operators to extract more reserves out of depletion-drive reservoirs in the Gulf of Mexico and the continental U.S.
Benefits
This technology was expected (if successful) to improve gas recovery by removing bottomhole water from gas wells so that the reservoir energy has only to lift the gas column. This lift also could be used for oil wells under depletion drive. The technology allows operators to produce more oil and gas out of known reservoirs in areas that already have an existing infrastructure, as with many of the mature fields in the United States.
The through-tubing artificial lift system has the potential to allow operators to reactivate wells that can no longer flow by natural reservoir pressure. By reactivating these wells, more production and thus more reserves recovery could be realized from currently idle assets. The technology focuses on extracting more oil and gas out of known reservoirs in areas that already have an existing infrastructure.
Of the estimated 17,402 active wells in the Gulf of Mexico, over two thirds are currently shut-in. (OCS Report MMS 2003050). Assuming that a very conservative 5% of the 17,402 are candidates for the through-tubing artificial lift technology, 870 wells potentially could benefit from the technology. Further assuming 1-2 billion cubic feet of gas per installation is being produced, a potential incremental reserves addition of ~1.3 trillion cubic feet (TCF) of gas is possible.
Another way to demonstrate the potential market of this technology is to look at the total reserves for the Gulf of Mexico. Proved reserves are estimated to be 14.93 billion barrels of oil and 167.3 TCF of gas. Assuming a conservative 1% incremental reserve increase resulting from the technology, an incremental reserve addition of ~1.6 TCF of gas and 30 million barrels of oil is possible.
Project Summary
This research and development project was aimed at developing a new through-tubing artificial lift pump system capable of removing small liquid volumes from gas wells. The advantage of this system approach is that it could be completely deployed and retrieved in a "rigless" fashion. In operating environments where costs are relatively high, such as offshore fields, this rigless deployment method could save the operating company hundreds of thousands of dollars.
The system was to be made small enough to pass through the existing tubing string. The system would pump liquids up a small inner string and allows gas to flow in the newly formed annulus areas. The pump system was to consist of a small-diameter (2 1/8-inch) electric submersible motor, gear reducer, thrust section, intake screen section, and a small-diameter liquid pump. Because it is a pumping system, all liquids were to be pumped to the surface, allowing a gas well to be produced to its lowest abandonment pressure. Virtually no reservoir energy would be consumed moving liquids to the surface because the hydrostatic and friction pressure losses would be overcome by the pump.
To accomplish the primary objective, the project plan was to 1) finalize the design and development of the various components, 2) acquire all of these components, 3) perform surface testing of the completed components, and 4) test the entire system in a well.