- Evaluated and selected adhesive bonding materials and installation methodology for MsS sensors on samples of above-ground and buried pipe, with and without coating,
- Developed procedures for sensor installation, testing, and data analysis, and
- Working with Clock Spring and El Paso Corporation, demonstrated that MsS could be permanently installed on an actual pipeline and buried for long-term monitoring.
The objective of this project was to demonstrate that the MsS technique can be used to monitor initiation and growth of corrosion in a buried pipeline. The objective was accomplished in two steps. The first step was to conduct preliminary work at the SwRI facilities to evaluate the MsS monitoring technology and to optimize it for field demonstration. This included evaluation and selection of adhesive bonding material for permanent installation, evaluation of the methodology on samples of aboveground pipe and buried pipe with and without coating, and development of procedures for sensor installation, testing, and data analysis. The second step involved working with ClockSpring and El Paso Corporation to demonstrate the technology on an actual pipeline.
The results of the laboratory evaluation showed that five-minute epoxy was suitable for adhesively bonding the sensor strips in the field. Defects on the order of 0.5 percent of pipe wall cross-sectional area loss could be detected over a 4.6-meter (15-feet) range in uncoated, above-ground piping, while on uncoated and buried piping the detection capability decreased to defects on the order of two percent over approximately a 7.6-meter (25-feet) range at 0.6-meter (two feet) of soil cover depth. The decrease was due to increased wave attenuation caused by soil. Coating such as bitumen further increases wave attenuation and further limits the detection capability.
Two field tests were carried out; one conducted on a 610-mm (24-inch) OD, 6.4-mm (0.25-inch) wall thickness transmission gas pipeline in Cleveland, Texas and the other on a 762-mm (30-inch) OD, 11.4-mm (0.45-inch) wall thickness transmission gas pipeline in El Paso, Texas. Both lines had bitumen coating for corrosion protection. The pipelines were excavated in a location near to a known defect area and the MsS probes were installed on the excavated line after removing the coating locally for installation. On the 762-mm (30-inch)-OD pipeline, the probes were also buried by refilling the excavated area with soil, followed by additional testing after one-day and 21-day intervals. SwRI is collecting more MsS data periodically over the next year or so.
This project showed that the MsS probe indeed can be installed on a pipe and buried for long-term monitoring of pipe condition changes. It was determined that the application of MsS to monitoring of bitumen-coated pipelines is limited because of very high wave attenuation caused by the bitumen-coating and surrounding soil, and a resulting reduction in defect detection sensitivity and monitoring range. Based on these results, it was recommended that the MsS monitoring methodology be used in benign, relatively low-attenuation sections of pipelines (for example, sleeved sections of pipeline frequently found at road crossings and pipelines with fusion epoxy coating).