Following successful laboratory tests, the Forward Osmosis (FO) process developed at NMT was implemented in a 1000 gallon/day pilot-scale process to determine its effectiveness. The NMT FO desalination pilot plant (batch mode) was assembled inside a 30 foot long triple-axel trailer. The FO system consists of a feed water unit, membrane modules, a draw solution unit, and a recovery unit. The NMT system was transported to a site near Jal, New Mexico for field demonstrations. The NMT unit was integrated on-site with a pretreatment process provided by Aquastream (AS) to remove the petroleum-based solids and dissolved solids from the produced water before the water enters the cell membrane filtration process.
In September 2010, both the pretreatment and FO processes were proven effective in the field test in Jal, NM. Produced water from two different sites was processed through the integrated system. Chemical analysis was performed on all four water samples prior to their being used in the integrated system. During the testing process, samples were collected at three different stages—before the pretreatment process, after the pretreatment process/ prior to FO treatment, and at the end of treatment—in the process. These samples were tested to determine the effectiveness of both pretreatment and FO processes. Results showed that the FO process removed around two gallons of water from the feed solution in one hour. This is equivalent to a flux of 27.5 liters per meter square of membrane per hour, twice the highest value reported by the membrane manufacturer.
The field demonstration also identified a number of measures for improvement of the NMT pilot process. Laboratory tests on a sample collected from the draw tank after the FO process determined that it had been contaminated by chlorides (57,000 ppm) from the liner of the mixing tank. This was caused by a chemical reaction between either the epoxies or glues binding the membrane to the tank or tank liner materials. To eliminate the reaction, the draw solution tanks and connecting pipes were changed to stainless steel to ensure that there would not be any chloride or other chemical contamination resultant from the system materials. Following the replacement of the draw mixing tank and piping, a test was performed at NMT using another produced water sample which verified that no chlorides or chemicals leached into the water from the new tank materials
The project initially involved the serial enrichment of bacterial cultures to remediate oil. Cultures were assessed based on the qualitative measurement of oil removal. When the cultures were first inoculated they contained a large amount of dark oil and had low turbidity (a measure of bacterial growth in a solution). As the culture degraded the oil, the growth medium became less dark and more turbid. When this change occurred the culture was used as the inoculum for the next culture in the serial enrichment.
Results from the field tests indicate that there is nothing inherent in the design of the newly developed system that precludes scaling to a larger device. In addition, a preliminary economic analysis demonstrated that a well –designed FO process will outperform an RO process for feed solutions having a dissolved contaminant concentration greater than 10,000 ppm.
Due to the importance of finding additional water sources for an ever-expanding population in the southwest U.S., it is felt that a commercial system can be built to clean produced water and offset industrial water use. Lea County plans to continue efforts to obtain funding to build a commercial plant to treat the produced water for use by the potash industry.