VSP data that illuminate unconventional reservoirs in two diverse geological settings have been analyzed to demonstrate that the use of direct-S modes produced by vertical vibrators at orthogonal-azimuth source stations is a valuable way to evaluate fracture systems and anisotropic properties of unconventional reservoir systems.
This study documents Alford rotation, which can be applied to a wider range of VSP data than some investigators have supposed. Examples from this study show Alford rotation concepts can be applied to VSP data that violate the various assumptions that many investigators impose on VSP data that are used to determine natural-coordinate axes.
In the VSP application, it is preferred to deploy vertical vibrators at source stations that have source-to-receiver azimuths that differ by 90° in order to illuminate a fractured interval with orthogonal S-wave displacement vectors. However, this orthogonal-azimuth source-station geometry has to be abandoned when acquiring 2-D and 3-D reflection data with surface receivers.
VSP data can be used when source-receiver offsets exceed receiver depth, and when raypath arrival angles are 45° and larger. This use of Alford rotation contrasts with the common assumptions that source-to-receiver offsets for data used in Alford rotation procedures should be small and that raypath arrival angles of S-wave raypaths at VSP receiver stations should be close to vertical.
VSP S-wave data can be used when the radial and transverse S-wave displacement vectors used in Alford rotation are not oriented in orthogonal azimuths. Most data processors take great care to use S-wave data in Alford rotation analyses in which radial and transverse displacement vectors are as close to orthogonal as possible.
Vertical vibrators used in this analysis were positioned at widely separated source stations and raypaths from the sources traversed significantly different overburden conditions before reaching a targeted reservoir interval. In contrast, data preferred for Alford rotation are produced by orthogonal horizontal vibrators positioned at the same zero-offset source station, so that source wavelets travel identical trajectory paths through identical overburden conditions to reach a fracture interval.
SV shear wavefields are produced directly at the point where a vertical vibrator applies its vertical force vector to the earth. These direct-SV wavefields are robust and can be used to estimate S-wave anisotropy in the same manner as S wavefields produced by horizontal vibrators.
When vertical-vibrator source stations are distributed in a circle around a VSP well, azimuth-dependent direct-S and direct-P average velocities can be calculated to allow natural-coordinate axes to be recognized. Using all available calibration data, the azimuths of these natural coordinate axes can then be associated with either the azimuths of vertical fractures or with the azimuths of maximum and minimum horizontal stresses.
One important consideration is that the cost of acquiring multicomponent seismic data can be reduced by using vertical-force sources to generate direct-S waves. Because of the potential commercial value of using vertical-force sources to generate direct-S modes, the concepts illustrated in this research have been patented by the Board of Regents of The University of Texas System (Hardage, 2011).
Vertical vibrators are widespread and horizontal vibrators are not, a second implication is that direct-S data acquisition can be considered across many areas where S-wave technology could not otherwise be performed.