Phase II, and IIB
ABS Materials has completed all Phase I objectives. ABS Materials, in conjunction with three global oil service companies, designed and built a trailer-mounted, 3,600 gallons per hour (gal/hr) flowback water purification system for field use. One major oil services company, with scientific leadership present, contracted to conduct a full pilot test in the field using produced water from the Clinton Formation in Ohio in July 2010 and March 2011. Total petroleum hydrocarbon (TPH) levels were reduced from 227 mg/L to 0.1 mg/L during testing. TPH is a more stringent measurement than oil and grease, indicating the treated water was well below the discharge threshold of 29 mg/L. This test successfully demonstrated the effectiveness of Osorb in a large system.
ABS Materials constructed PWU 1.5, a 65 gal/min fully automated treatment system mounted on a 53 ft. drop-deck trailer, and conducted successful wet testing in June 2012 with fresh water only. Wet testing with the addition of Osorb and the recovery of Osorb from the fresh water was successfully completed in August 2012. The recipient conducted a pivot based on the projected costs of running the PWU 1.5 system and the changing value proposition for onsite treating of flowback water vs. sending it to a disposal well. A pilot unit (VOC Capture Unit) capable of a 1 bbl/min flow rate was designed and built based on a replaceable cartridge design. The VOC Capture unit is being used on contaminated industrial waste and the lessons learned are being utilized to improve both the pilot unit design and provide a means to evaluate Osorb regeneration concepts. Industrial wastewater was used as a substitute for produced water in these field trials. The system is modular in design allowing for easy scale up to higher bbl/min flow rates. The replaceable cartridge design for the pilot system virtually eliminated the loss of Osorb during capture and regeneration processes. The two main cost drivers for using Osorb technology are the base cost and costs associated with regeneration. The project has focused significant effort on reducing the cost basis for Osorb through increased manufacturing procedures. A second equally important focus was on the regeneration process.
The cost basis for producing the base Osorb Media continues to be driven down through improved manufacturing processes, reduced labor, distillation and re-use of solvents, and improved particle grinding and recovery efficiencies. Additional cost reduction activities continue with 100 percent of the cost reduction goal expected to be met over the next 6 months ABS Materials initiated an additional regeneration approach to utilize liquid butane as the regeneration solvent plus heat process. The approach is to pass liquid butane through oil-laden Osorb to remove the oil via a gas reclamation pump. Pilot-scale testing has demonstrated 75 percent oil removal. A small-scale butane extraction system has been built to further explore this approach with the goal of replacing butane with liquefied petroleum gas in follow-on designs.
The liquid butane extractor was redesigned to improve cleaning effectiveness and perform regeneration of the contaminate-laden Osorb. The new design removed +99 percent of oil from water-wet Osorb. The project team demonstrated that other low boiling gases (LPG [liquefied petroleum gas] and refrigerant R134a) are suitable for use in the liquid-gas extractor for regeneration of Osorb.
Sub-Project A: Define and refine business value proposition.
The targeted industrial wastewater market (IWM) was segmented into 3 segments: 1. On-site, 2. Replace/enhance on-site tertiary treatment, and 3. Transfer Storage Disposal Facilities (TSDFs). Contact and lead development priorities were assigned to the three segments. The IWM companies in the six-state region centered on Ohio were identified by their EPA discharge permits. Nine field trials were conducted at four locations to test the method of identifying suitable target IWM companies based upon the EPA discharge permits. Specifics of the field trials are provided in sub-project E. Discussions with three subject matter experts in IWM were conducted to verify value propositions for Osorb technology. The Osorb water treatment technology was presented to three large, global water treatment corporations via their Innovation Portals, to gain faster market penetration by developing business relationships. The Osorb wastewater treatment technology is being marketed under the tradename, Regenex™ ITS.
Sub-Project B: Identify the Osorb media types with best value.
Past research was focused on ruggedness of the blended media developed previously. Preliminary testing within the prototype unit using the blended media resulted in an observed decreased capacity for contaminants as the water treatment/regeneration cycled. This likely indicates that the absorbent media is delaminating from the inert core in the blended media. To prevent this delamination from occurring, there has been an effort to functionalize the surface of the inert core to promote polymerization of the absorbent media onto the surface of the inert core. This modified blended media is currently being evaluated at lab-scale, and production scale-up will be planned for the coming months.
Additional R&D efforts have been focused on the development of media for the improved capture of mid-range partition coefficient contaminants (log Kows 1.3 to 1.9). A variety of media samples have been synthesized and evaluated at lab-scale for the removal of contaminants that are slightly more hydrophilic, which would expand our treatment capabilities. These medias have been made through modification of the polysilsesquioxane matrix to impart more hydrophilic chemical functionality and/or modify the pore structure of the media. This testing will continue into the third quarter of 2016.
Sub-Project C: Design, fabricate and evaluate a modular, integrated treatment system.
It was found that the blended media was not suitable for repeated regeneration cycles. The Sorbit media was found to be both effective at capturing contaminants and having excellent durability through 100 regeneration cycles.
The effectiveness of contaminated media regeneration was evaluated by analyzing the effluent and targeting the back diffusion of the target compound. As expected, the duration of the regeneration is directly correlated to effectiveness of the regeneration cycle. These duration values will be utilized as guidelines for regeneration cycles in the mobile, modular treatment system, sub-project E.
Sub-Project D: Determine the effect of Osorb pretreatment on bio-digestion.
Bioassay testing was performed using activated sludge and industrial wastewater to evaluate the effect of Osorb pre-treatment on biodigestion capacity. The industrial wastewater was obtained from one of the client sites. Significant results are that Osorb treated industrial wastewater exhibits minimal foaming vs. a non-treated wastewater in activated sludge units. The biodigestion rates were equivalent. Biodigestion rates were measured by chemical oxygen demand (COD) determinations. We conclude that Osorb treatment would be more feasible and beneficial after biological treatment processes as a polishing step.
Sub-Project E: Design and fabricate a pilot scale, 15 bbl/hr (10.5 gpm) modular water treatment system.
An industrial design firm was hired to conduct engineering and design work for the 10.5 gpm Regenex-Industrial Treatment System (ITS). A local (Cleveland, OH) manufacturing/fabrication firm was recommended and selected to build the first unit. The fabrication company specializes in oil and gas, and refrigeration equipment. The media regeneration process involves compressing hydrocarbon gas to liquefy it in a similar manner to refrigeration equipment. The final design of the unit includes two treatment vessels filled with ABS Materials’ regenerable media. The unit treats water in one vessel while the other is regenerated. Continuous operation (24/7) is obtained by switching vessels when the media in vessel one gets saturated, and regenerated while the media in vessel two comes online to treat the wastewater. The system will be 100% automated and configured by the fabricator.
The dimensions of the unit are 6 ft x 20 ft x 7 ft tall, and weighs 8,500 lbs. This first unit is intentionally being built with space between components. This component spread will facilitate improvement modifications, serve for highlighting unit features, and provide clear identification of components for prospective clients.
The fabricator is in the process of laying down the main components of the unit. The unit is expected to be completed and shipped to ABS Materials by July 2016 after acceptance testing. The completed unit will fit onto a covered, 24-foot trailer for easy field deployment and customer evaluation purposes.
Sub-Project F: Field Trials with 15 bbl/hr modular treatment system.
A portable 10.5 gpm (15 bbl/hr) treatment only unit was developed for field trials while the fabrication of the complete modular treatment unit (Sub-project D) is underway. A total of nine field trials were conducted at four client sites. The clients consisted of two, 10-day, Transfer Storage and Disposal Facilities (TSDF), one full service TSDF, and one industrial wastewater processor. Four trials were determined to be successful for Regenex because COD, chlorinated solvent or Oil and Grease (O&G) components were significantly reduced/eliminated from the treated effluent. Five trials were determined to be not suitable for Regenex because conventional filtering removed the suspended solids where the contaminants were adhered. Information gathered from all field trials are useful in identifying suitable wastewater markets. Additional field trial sites are continuing to be scheduled.
Sub-Project G: Design and fabrication of second generation 15 bbl/hr modular treatment system.
ABS Materials is working on the design for the second generation of the modular treatment system. The main goal is to shrink it in size and weight. The future modular system will be 6ft x 9ft x 6 ft tall. The unit will be more compact and enclosed.
ABS Materials is working on the bill of materials (BOM) provided by the fabricator. The goal is to identify individual components and their cost and look for alternative, less expensive options for lowering the cost of the second generation of Regenex ITS. ABS Materials’ goal is a 35% reduction on the total cost of the unit in both component and labor.