Chesapeake Energy has supplied Utica shale core from the unconventional plays in Ohio and Pennsylvania. The researchers have data on the mineralogy, porosity, and organic carbon content of these samples. In addition, they have acquired Marcellus shale in outcrop.
Researchers developed a novel technique for inducing hydraulic fractures in a triaxial device. Previous studies have required specialized equipment or sample geometries, but LANL’s approach works with standard rock core and allows permeability measurements of the fracture system. The researchers have conducted simultaneous fracturing of shale in a triaxial device while conducting x-ray tomography imaging, an experimental first that will be key to understanding in situ fracture properties. They have developed and implemented an acoustic emission system to monitor fracture development.
Researchers have made numerous measurements of fracture permeability of Utica shale conducted in traditional compression experiments and using direct shear methods. These have provided detailed information on the effect of confining stress (or depth) and time on fracture permeability and evolution. Fracture permeability tests were performed at high effective confining pressure and showed that in spite of substantial sample shortening, permeabilities remained less than 1 mD until the pressure was released.
The researchers have conducted preliminary sweep efficiency experiments with a high-pressure microfluidics system to characterize hydrocarbon removal during water injection and developed improved fracture etching methods for representing complex fracture networks in shale. An experimental study that quantifies permeability of fractured, carbonate-rich Marcellus shale (Bedford Quarry, Pennsylvania) was completed. A newly modified version of LANL’s triaxial direct-shear device was used, which enabled improved resolution of permeability as well as a quantification of uncertainty of the permeability measurements. The results of the experiments demonstrate the importance of considering the stresses at which fractures are created when predicting the permeability of fractured, low permeability rocks. In LANL experiments on a carbonate-rich Marcellus shale, LANL investigated triaxial direct-shear specimen permeability as functions of: 1) increasing stresses at which fractures are created through initially intact material; 2) increasing confining stress on an existing fracture; 3) increasing shear displacement across an existing fracture; and 4) combined time-dependent effects such as mechanical creep, chemical precipitation, and particle mobilization.
- The effect of increasing the stress at which fractures were created was most significant.
- Increasing the effective confining stress on an existing fracture was also found to cause permeability reduction.
- Increasing the shear displacement across an existing fracture had varying effects, dependent upon the effective confining stress and magnitude of displacement.
- Permeability after fracturing was generally observed to decrease with time.
In addition, experiments were completed on one Marcellus core, which was acquired from the Marcellus Shale Energy and Environment Laboratory (MSEEL). The sample lithology is much more clay-rich than what was used in previous experiments. Core preparation has begun for this study, which involves subsampling the 4"-diameter slabbed material to create 1"-diameter core that the research team used in the triaxial device. The team will conduct experiments similar to previous work but will apply new approaches of characterizing the tributary fracture zone (TFZ). The team worked with the quantification of fracture-network permeabilities as well as examining the impact of reservoir stress conditions on fracture permeability and the integration of tributary fracture zone properties with Discrete Fracture Network (DFN) simulations.
A workflow was developed to help integrate tributary fracture zone properties with DFN simulation. In principal, this integration allows laboratory measurements from fractures at the centimeter scale to be related to larger fractures at the meter to kilometer scale and to be populated in the DFN model.
Using experimental data on the TFZ, LANL has also developed a methodology to incorporate diffusion and advective flow mechanisms in the TFZ to perform simulations on the influence of various transport mechanisms. These include simulations of matrix diffusion in the TFZ; simulations of the extent to which the TFZ consists of natural, reactivated and induced fractures; and simulations of the percentage of free hydrocarbon in the primary fracture network. The main conclusions of this study were that:
- Matrix diffusion in the region of the TFZ significantly impacts production within the first year itself.
- Depth of TFZ fracturing region had no effect on the shape of the production curves, although the total mass of the hydrocarbon produced increases with the depth.
An additional set of experiments using a relatively carbonate-rich sample of Marcellus core acquired from MSEEL were used to identify critical stresses associated with the transition from highly transmissive to weakly transmissive fracture systems. In the field, this critical stress is a function of the depth of the shale, fracture orientation, and pore pressure. The results of the experiments demonstrate the importance of considering the stresses at which fractures are created when predicting the permeability of fractured, low-permeability rocks.
LANL has also performed experiments on multiphase fluid flow processes and has examined the impacts of fracture geometry and fluid properties on the recovery of hydrocarbons from complex fracture networks. LANL has also considered the role of matrix properties in the release of hydrocarbons into the fracture network. To this end, exploratory experiments were conducted investigating how surfactant impacts frack fluid interaction with the matrix and how surfactant impacts oil recovery in fracture networks. These experiments were conducted using a microfluidics system operated at reservoir conditions with temperatures at 50 oC and fluid pressures of 10 megapascals (MPa). Shale samples from an unconventional reservoir were sliced into thin wafers and then etched to produce fracture geometries for the study of fluid migration and oil production. Preliminary experiments show that LANL can measure fluid transport through the shale matrix allowing for the calculation of effective permeability, capillary barriers among other properties.
LANL completed experiments showing how changes in effective stress (e.g., as produced during pressure drawdown) created changes in fracture permeability for Marcellus shale. The decrease in hydraulic aperture as a function of effective confining stress was fit using Barton-Bandis theory.
LANL has identified potential critical drawdown conditions that can close fractures and found
MSEEL core may be near critical stress. We investigated previous experimental results on
fracture closure with the aim of determining the conditions under which closure is important. To do this, LANL developed a fracture-system model containing the well, the hydraulic fractures and natural fractures. The impact of fracture closure depends strongly on the value of a in the equation below, the fracture-stiffness coefficient:
b=b0exp(aσ’n)
Where b0 (initial fracture aperture) and a (fracture stiffness) are experimentally measured values specific to the reservoir or basin of interest and b is the calculated fracture aperture as a function of the effective stress σn.
Capabilities are being developed to handle methane gas in both microfluidics and triaxial coreflood experimental facilities. This will allow for a more realistic investigation into multiphase flow processes and allow researchers to assess the behavior of “live oil” systems. In particular, revised experimental protocols will provide more direct feedback to the development of pressure management strategies that maintain permeable pathways and allow for sustained hydrocarbon transport and production.
LANL has also continued work on experimental investigation of the permeability of Marcellus shale with a focus on MSEEL core material that was received from NETL. This work is part of a larger effort by the team to develop stress-fracture aperture permeability relations to support optimized pressure management strategies. LANL also completed experiments showing how changes in effective stress (e.g., as produced during pressure drawdown) created changes in fracture permeability for Marcellus shale.