Back to Top
Skip to main content
NETL Logo

Boston University (BU) will design solid oxide fuel cell (SOFC) anodes that are functional at intermediate temperatures and maintain high power densities at high fuel utilization, which is accompanied by high water vapor concentrations at the anode. BU will demonstrate the ability to deposit fine nano-sized connected nickel (Ni) catalyst particles by infiltration into porous yttria stabilized zirconia (YSZ) and YSZ/Ni scaffolds to increase triple phase boundary length. Project personnel will optimize the anode microstructure based on quantitative microstructural characterization, polarization measurements, and modeling. The result will be the production of SOFC cells that demonstrate a substantial improvement in cell performance at intermediate temperatures and high fuel utilization rates compared to cells with conventionally processed anodes. The challenge is to deposit them in a fine, but connected microstructure, with substantial neck formation during sintering without significant coarsening. This project leverages previous related work under DOE contracts NT0004104 and FE0009656.

image_plp
Plot of power density versus current density, showing the reduction of power density with increasing fuel utilization. Since commercial fuel cells run at high fuel utilization, it is important to mitigate such effects.
plp_DOD_share
Off
Presentations_plp
Principal Investigator
Soumendra Basu
basu@bu.edu
Project Benefits

BU's research will produce SOFCs with optimized anode microstructures resulting in demonstrated improved power densities at intermediate temperatures and high utilization rates (up to 85% water vapor) and an improvement in power density compared to a conventionally processed anode.

Project ID
FE0026096
Website
Trustees of Boston University
http://www.bu.edu/