Back to Top
Skip to main content
NETL’s 2020 Compendium of Carbon Capture Technology, which provides a technical summary of the Lab’s Carbon Capture program, is now available for viewing online. The document allows stakeholders in corporations, small businesses, universities, other national laboratories, nonprofit organizations and government agencies to learn more about the activities of the Carbon Capture program. Developing advanced CO2 capture technologies is critical to keeping fossil energy-based power generation affordable and reducing greenhouse gas emissions. In the 2020 Compendium of Carbon Capture Technology, research and development (R&D) efforts highlighted include the development of sorbents, solvents, membranes and novel concepts for both post- and pre-combustion CO2 capture.
Mac Gray
In his long career at NETL, McMahan Gray has experienced more than a few successes. For example, the award-winning research chemist has made valuable contributions to remove carbon from industrial emissions and extract rare earth elements (REEs) from coal byproducts, wastewater and even acid mine drainage. Another ground-breaking contribution may be just around the corner. As part of an ongoing research effort, Gray serves on an NETL team that’s writing a new chapter in the long productive history of coal that may revolutionize how the mineral is used in the future. The team has found that rather than combust coal to produce energy, it can be used in new ways to fuel a transformation in carbon-based, high-tech manufacturing to produce safer cars, faster computers, stronger homes, bridges and highways, and even life-saving biosensors to confirm the presence of disease in the human body.
Image courtesy of Gas Technology Institute
Photo Caption: Image courtesy of Gas Technology Institute. The new STEP facility, supported by NETL, will house a desk-sized sCO2 turbine that could power 10,000 homes. Key recommendations to guide the operation of a first-of-its-kind testing facility to develop next-generation power plants have been issued by NETL researchers. If successful, testing at this facility will provide a pathway to lower the cost of electricity, shrink the environmental and physical footprint of power generation systems and conserve water.
Combustion Laboratory
Researchers in NETL’s Fundamental Combustion Laboratory (FCL) have developed advanced diagnostic techniques that are providing accurate, real-world data to validate models of next-generation fossil fuel and combustible renewable (i.e., hydrogen) technologies like direct power extraction (DPE) systems and rotating detonation engines (RDE). As the models become more refined, these technologies can be efficiently designed and deployed to realize significant performance benefits, which will help to reduce greenhouse gas emissions and provide more affordable and reliable energy for the nation. “The diagnostic techniques we’ve developed are unique in that they are very application-specific,” Clint Bedick, Ph.D., who works in the FCL, said. “Whether it’s finding ways of measuring the intense heat and electrical conductivity of an oxy-combustion flame or recording an RDE shock wave that lasts only milliseconds, we tailor our approach for the specific environments in which we’ll be measuring.”
NETL researchers have developed a method to custom-formulate low-cost membranes to more effectively separate carbon dioxide from nitrogen in a high volume of flue gas. This ability to achieve both high selectivity and high permeability during post-combustion carbon capture operations is one of the most difficult problems facing membrane researchers today. The NETL group solved the challenge by chemically binding multiple membrane components with different critical properties into one high-performance material that can be easily scaled up to reduce the costs of large-scale carbon capture operations.
NETL Research Associate Kristyn Johnson took the top prize at the national Ignite Off! Competition this week for her dynamic Ignite Talk — a fast-paced presentation that uses 20 picture-centric slides that automatically advance every 15 seconds. She previously advanced from the local round at NETL and went on to compete against the other finalists from Argonne National Laboratory and Oakridge National Laboratory, winning for a presentation on her research investigating rotating detonation engines. Kristyn is part of the Professional Internship Program and her mentor is Don Ferguson. “I was very happy to represent NETL in the final round of the competition,” Johnson said. “The entire experience, both presenting my own work in such a unique format as well as learning about the work of other researchers, was very interesting and beyond rewarding. To win the competition is truly an honor that would not have been attainable without the support of our pressure gain combustion team.”
Mark Menezes
U.S. Deputy Secretary of Energy Mark Menezes will serve as opening keynote speaker and NETL representatives will share program updates during the ESA Energy Storage Annual Virtual Conference & Expo to be held Monday, Aug. 24, through Thursday, Aug. 27. The U.S. Department of Energy’s (DOE) principal advisor on energy policy and existing and emerging energy technologies, Menezes will take part in The Road Ahead, a Keynote Session scheduled from 11:30 a.m. to 12:30 p.m. EDT on Monday, Aug. 24. Menezes’ address will focus on America’s leadership and innovation in energy storage and DOE’s recent launch of the Energy Storage Grand Challenge, a comprehensive program to accelerate the development, commercialization and utilization of energy storage and sustain American global leadership in the field. In addition, DOE will host a learning lab exploring the Energy Storage Grand Challenge at 2 p.m. EDT on Wednesday, Aug. 26.
ORNL’s funding supports the Advanced Coal Processing Program's goal to find uses for coal outside of traditional thermal and metallurgical markets.
Two U.S. Department of Energy (DOE) National Laboratories, the National Energy Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL), are working with the University of Kentucky and the Pennsylvania State University to further the research and development of coal-derived carbon fibers. This research, valued at $10 million, will investigate all aspects of coal-derived carbon fiber production—from computational chemistry and pitch processing to the final spinning and heat treatment process of the fibers. The aim is to produce fibers with superior properties at a lower cost than currently available. Through this effort, ORNL researchers will work to understand the chemistry and processing conditions required to produce different grades of coal-derived carbon fiber. NETL, ORNL, and the university teams will work closely to diversify U.S. coal use in domestic manufacturing, while making coal and coal-based products more attractive for export.
The second week of the DOE-NETL 2020 Virtual Integrated Project Review Meeting is filled with opportunities to learn from the best. Experts in simulation and modeling to achieve efficiencies in coal- and gas-fired power plants and others in the fields of high performance materials, the current state of the existing power plant fleet, and the use of artificial intelligence and sensors for improved plant operations will be featured Aug. 24-27 in this series of free programs. Session titles and dates are:
NETL researchers envision a future in which hospitals, universities and other institutions will use on-site combined heat and power (CHP) systems to produce their own electricity, as well as the energy to heat and cool their buildings, while burning less fuel and releasing fewer emissions into the atmosphere. To make that happen, NETL’s Thermal Sciences Team is designing advanced airfoils for natural gas turbines to enable CHP systems to operate with greater efficiency. “Higher efficiency increases power output using the same quantity of fuel, which translates into lower costs to run a CHP system and reduced carbon dioxide emissions,” said Doug Straub, Ph.D., who works at the Lab’s campus in Morgantown, West Virginia. The goal of the Advanced Turbine Airfoils for Efficient Combined Heat and Power Systems project is to evaluate how new airfoil cooling designs, new materials and additive manufacturing technologies can raise the efficiency of turbines used in CHP systems.