Back to Top
Skip to main content
CO2 Logo
Committed to its goal of developing new energy technologies while retaining environmental integrity, NETL manages a vast portfolio of carbon capture research and development projects that are successfully reducing costs to ensure the availability of clean, reliable and affordable power from America’s abundant domestic resources. In 2007, the Administrator of the U.S. Environmental Protection Agency found that current and projected atmospheric concentrations of greenhouse gases, including carbon dioxide (CO2), threaten the public health and welfare of present and future generations. Carbon capture technologies reduce greenhouse gas emissions by capturing CO2 from fossil energy-fueled power plants before they are released into the atmosphere. Existing capture technologies add costs for industry and consumers. NETL is leveraging cutting-edge research facilities, world-class technical expertise and strategic collaborations to develop efficient and economical solutions that make carbon capture technology viable for decades to come.
The oxy-kerosene flames used in the research is the same ultra-high temperature fuel used during the Space Race.
NETL-led research shows the possibilities and benefits of developing magnetohydrodynamic (MHD) power generation such as improved efficiency for fossil fuel power plants and reducing the costs of implementing carbon capture. MHD generation works by taking direct kinetic energy from fast-moving ionized gases and converts it into electricity without any moving parts. This is done through the Lorentz force, which deflects opposite charged particles away from each other in a strong magnetic field. By collecting oppositely charges on electrodes, an electrical potential or voltage is developed that can be used to drive external loads. Peter Hsieh, with NETL’s Structural Materials Team, said the conditions to make an MHD generator work can be applied in solar, nuclear, and fossil fuel power plants to increase energy efficiency and drive down the costs of carbon capture. Carbon dioxide and water vapor are the only combustion products in oxy-fuel fired power plants, and the latter is readily separated through condensation. MHD generation makes oxy-fuel combustion more economical by helping to recoup the energy needed to separate oxygen from air.
FOA Logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) and NETL have selected 11 projects to receive approximately $17 million in federal funding for cost-shared research and development projects for carbon utilization. The projects will develop and test technologies that can utilize carbon dioxide (CO2) from power systems or other industrial sources as the primary feedstock. The research goal of DOE’s Carbon Utilization Program  is to reduce emissions and transform waste carbon streams into value-added products.
The first of three webinar sessions hosted by NETL starting June 23 will detail the upcoming U.S. Department of Energy (DOE) InnovationXLab CarbonX Summit. Scheduled for Sept. 22-23 at the David L. Lawrence Convention Center in Pittsburgh, the InnovationXLab CarbonX Summit showcase DOE technologies and the Lab’s capabilities which are transforming the domestic energy economy by enabling value-added products, environmentally conscious storage, and economical carbon dioxide capture. NETL’s webinar series will provide a snapshot of what attendees can expect should they also attend the in-person expo in Pittsburgh. High-level speakers attending the event in Pittsburgh will also present on cutting-edge topics of interest during the webinars.
NETL expertise is finding new ways to transform coal and natural gas into chemicals, including the lightest element listed in the periodic table, to resolve a heavy burden for operators of the U.S. electricity grid system. Partnering with leading university researchers and industry, NETL plans to advance the use of fossil fuels in an environmentally responsible manner to generate hydrogen and other forms of chemical energy, which will be stored for long durations and used when needed to produce electricity and valuable products, ensuring affordable, reliable and clean electric power for generations of consumers. Hydrogen (H2) gas, with an atomic structure of two protons and two electrons, can be produced from coal and natural gas to serve as an important energy storage medium in the Advanced Energy Storage Program. NETL is developing the program in conjunction with the U.S. Department of Energy’s (DOE’s) Office of Fossil Energy (FE).
A groundbreaking NETL study demonstrated that machine learning (ML) and data analytics can be used to design next-generation alloys needed to operate fossil fuel-based power plants with greater efficiency and produce affordable electricity while lowering emissions of greenhouse gas. Completed by a team at NETL’s facility in Albany, Oregon, an internationally recognized center of excellence for alloy fabrication, the study validated the application of ML analysis to enable more rapid and exceptionally accurate design of high entropy alloys (HEAs) — critical materials for ultra-efficient power generation — and eliminate the trial-and-error method and other models to develop these advanced materials.
Hero Image
Researchers at NETL are one step closer to solving one of the most difficult problems associated with developing post-combustion carbon dioxide (CO2) capture technology. The team has developed a new process to create a chemically bound, dual-layer membrane or sorbent that combines the benefits of high permeability and high selectivity – two material qualities that are usually mutually exclusive – to more effectively separate CO2 from nitrogen found in power plant flue gas.
Story Image
Three NETL researchers coauthored an invited article on nickel-based superalloys for the 50th anniversary issue of the prestigious journal Metallurgical and Materials Transactions (MMT) A. The paper, titled “Solving Recent Challenges for Wrought Ni-Base Superalloys,” discussed the status of technology, design and manufacture of advanced superalloys required for fossil energy and aerospace applications. Martin Detrois, Paul Jablonski and Jeffery Hawk, all based at NETL’s Albany site, contributed to the article by conducting a review of work to understand the suitability of candidate alloys for multiple applications in advanced-ultra supercritical (AUSC) coal-fired power plants, which will burn hotter and more efficiently than current plants to provide more power with fewer emissions.
Source: Wikipedia. Author is licensed under CC BY-SA
A new National Energy Technology Laboratory (NETL) report shows that under certain scenarios grid operators in the Electric Reliability Council of Texas (ERCOT) may be forced to utilize extraordinary measures to ensure the operation of the Texas power system this summer, including potential brownouts and load shedding.  The study looks at the evolution of the ERCOT market across the last decade to provide an understanding of how the market arrived at its current condition. In addition, the study examines four scenarios and utilizes probabilistic dispatch analysis to assess the potential for resource adequacy and reliability concerns under those scenarios. The study finds that under three of the four scenarios, the region will see an increased risk for Energy Emergency Alerts and need for emergency operator actions to ensure the reliable delivery of electricity to the more than 25 million people served by ERCOT.   NETL’s Peter Balash highlighted the importance of ensuring reliable power systems operation during the summer season given the current Coronavirus epidemic. 
NETL Morgantown
NETL continues to adapt to current events by taking the Mickey Leland Energy Fellowship (MLEF) summer internship program virtual for the participating students for the first time. Participants include science, technology, engineering, and mathematics (STEM) majors who will get one-on-one mentorship experiences working with NETL’s world-class scientists and engineers. Sean Sanguinito, a research scientist at the Lab’s Pittsburgh location who has mentored in the program for years, said that although the Lab’s facilities remain closed, the ability to take the program online has plenty of valuable experiences to offer such as modeling studies, data analysis/interpretation, literature review work, and other computational efforts. “While participants won’t be on-site, they will still learn about all the different components that are involved in being a research scientist,” he said. “Research does not simply include conducting laboratory experiments. The students will perform literature reviews, analyze existing data, interpret and plot existing data, write up their results, and present their conclusions in a professional manner.”