Back to Top
Skip to main content
 
 
 
NETL and the U.S. Geological Survey have signed a memorandum of agreement to work together on rare earth elements research.
NETL and the U.S. Geological Survey (USGS) have signed a memorandum of agreement (MOA) to share geologic samples containing rare earth elements (REE) and critical minerals (CM). The arrangement will bolster REE and CM research for both organizations and help ensure vital components of clean energy technology will continue to be manufactured well into the future as the nation works to secure independence from offshore REE reliance. In addition to being used to create many of the technologies Americans use every day, REEs are essential for manufacturing of batteries for electric cars, magnets for wind turbines, solar cells and other technologies that are paving the way toward a net-zero emissions energy economy by 2050. Furthermore, NETL research is focused on extracting REEs from coal and coal byproducts, reimaging coal in the form of valuable products to provide new jobs in areas hard hit by declining industries.
Pilot scale
A NETL-supported project by Physical Sciences, Inc. (PSI) has demonstrated its capabilities to produce rare earth element (REE) concentrates using available coal ash resources from Appalachia, providing a potential domestic source of these critical minerals and a means of local environmental remediation. The U.S. Department of Energy (DOE) and NETL have prioritized the creation of a domestic supply chain for production of REEs because they are crucial for a variety of economic, energy and defense applications. However, the current supply chain is dominated by other countries. Therefore, a domestic source would insulate the U.S. from any disruptions in global trade of REEs, and America’s coal ash based resources show promise to become that source.
Kentucky
A NETL-supported project at the University of Kentucky (UK) successfully conducted pilot-scale testing in their facility that was designed to extract mixed rare earth elements from coal and coal by-products using advanced extraction technologies, achieving production of mixed rare earth oxide (MREO) concentrates of up to 98% purity and exceeding original project goals. During Phase I of their first DOE-funded rare earth recovery project, which began in March 2016, UK and project partners Virginia Tech, West Virginia University, Minerals Refining Company, Blackhawk Mining, and Alliance Coal performed a feasibility study and developed a preliminary design for a pilot-scale plant to process up to ¼ ton per hour of coarse coal refuse and recover rare earths from feedstock materials from the Central Appalachian Basin and Illinois Basin.
FOA Logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) has announced $28.35 million in federal funding for cost-shared research and development projects under the Funding Opportunity Announcement (FOA) DE-FOA-0002404, Advanced Processing of Rare Earth Elements and Critical Minerals for Industrial and Manufacturing Applications. The U.S. imports more than half of its annual consumption of 31 of the 35 critical minerals (CM). The U.S. has no domestic production for 14 CMs and is completely dependent on imports to supply its demand. CM are used in the manufacture of high-tech devices, national defense applications, and green growth-related industries. One of these CM, rare earth elements (REE) are the 15 elements in the lanthanide series shown in the periodic table. Scandium and yttrium are included in the manufacture of cell phones, LED screens, solar panels, energy infrastructure, defense technologies, and other essential high-tech applications. The U.S. currently imports 80% of its REEs directly from China, with remaining portions indirectly sourced from China through other countries.
REE
An NETL-supported project at the University of North Dakota (UND) to economically extract strategically important rare earth elements (REE) has shown that lignite is a potential domestic source of these vital minerals using a process that also produces valuable by-products and takes advantage of existing mining infrastructure. REE have been designated as critical minerals by the U.S. Department of the Interior due to their unique properties, which are essential and often non-substitutable in a variety of consumer goods, energy systems and defense applications. With China largely controlling the global production and value chain, the U.S has begun moving to generate domestic supplies of these critical resource, a task NETL has supported with its partners in academia such as UND. During UND’s work, researchers simplified an acid-leaching REE extraction process to a single step for economic benefit.
REEF
An NETL-supported project at West Virginia University (WVU) to extract economically and strategically important rare earth elements (REEs) from Appalachian coal resources reached new milestones, such as partial automation of the recovery process, and exceeded its original REE purity and recovery goals. Researchers at WVU’s Water Research Institute used the on-campus Rare Earth Extraction Facility (REEF), which was designed, constructed and commissioned in 2018 as a part of this cooperative agreement, to demonstrate that acid mine drainage (AMD) precipitates from mining sites could be transformed into valuable revenue streams for local communities and businesses using the method of acid leaching solvent extraction (ALSX). “The research conducted at WVU continues to be a source of encouragement,” said Jessica Mullen, NETL federal project manager. “While there is still more work to be done, these researchers have demonstrated that Appalachia can be an attractive source of domestic REE production. If optimized, we may one day see AMD as an opportunity for economic growth instead of just a waste product, all while cleaning up the environment in the process.”
RFI Logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) has issued a request for information (RFI) to develop technologies needed to attain an uninterruptable domestic supply of critical minerals (CMs) and rare earth elements (REEs). A sustainable domestic supply of CMs and REEs is a U.S. priority because they are used to manufacture cell phones, LED screens, solar panels, energy infrastructure, defense technologies and in other essential high-tech applications. Advances in CM and REE sustainability will improve U.S. ability to overcome supply disruptions, restrictions or embargos of certain CMs and REEs by re-establishing the nation’s once world-leading CM and REE supply chains. Since 2014, DOE/FE and NETL have undertaken research focused on extraction, separation, recovery and purification of CMs and REEs from coal-based materials. This RFI seeks responses on a broad range of applicable CM and REE technologies that extend research beyond what is currently sponsored by DOE/FE and managed by the National Energy Technology Laboratory (NETL). Specifically, DOE/FE is interested in gathering information relevant to four topic areas:
REE
NETL-supported research at Virginia Tech has been recognized by the American Energy Society (AES) as one of the top energy and technology developments of the year for its game-changing economic potential to supply the United States with a steady domestic source of vitally important rare earth elements (REE). The project, titled “Development of a Cost-Effective Extraction Process for the Recovery of Heavy and Critical Rare Earth Elements from the Clays and Shales Associated with Coal,” was chosen by AES as one of the energy technologies of the year in its 2020 Energy Awards. Judges found the project was one of the three “most interesting energy-tech developments of 2020,” with respect to the projected fastest-to-market and long-term impact. AES recognized Virginia Tech’s research as a step forward in developing a domestic supply chain of rare earth elements, which are vital to the manufacturing of personal electronics, energy infrastructure and defense technologies, among many other high-tech applications.
FOA Logo
Today, the U.S. Department of Energy (DOE) and NETL announced plans to make available $122 million in federal funding for cost-shared research and development under the funding opportunity announcement (FOA) Carbon Ore, Rare Earth, and Critical Minerals (CORE-CM) Initiative for U.S. Basins. “The Trump Administration is committed to developing technological solutions to extract rare earth elements, critical minerals, and other valuable products from our Nation’s abundant coal reserves,” said Secretary of Energy Dan Brouillette. “These projects have an important role; they will help develop a viable domestic supply of these resources while creating new market opportunities for coal.” This funding is a part of the CORE-CM Initiative, which is sponsored by DOE’s Office of Fossil Energy. This initiative for U.S. basins is intended to catalyze regional economic growth and job creation by realizing the full value of natural resources, including coal, across basins throughout the Nation.
Low rank coal ash after rapid expansion by sCO2 in an attempt to alter surface area.
With support from NETL, researchers from the University of North Dakota (UND) and Pacific Northwest National Laboratory (PNNL) identified unique pathways and pretreatments to extract rare earth elements (REEs) from low-rank coal (LRC) ash in a more economical and environmentally sustainable manner that can be adjusted to meet variable conditions. LRCs, such as lignites, are one of the most abundant fossil fuel sources in the world.  NETL-supported project with UND and PNNL researchers has shown that the ash from LRCs can be a potentially viable source of REEs. The research team conducted an extensive characterization effort to understand the form, associations and partitioning of the REEs along with other relevant elements and minerals in the fly ash samples, as well as the ash chemistry, mineralogy and morphology. Understanding these intricacies was a vital step in developing the method for extraction and recovery of the contained LCR REEs.