Back to Top
Skip to main content
NETL Logo
REE
As the world continues its transition to a highly tech-driven economy, NETL supports innovative techniques to develop a reliable domestic supply of rare earth elements (REEs), which are vital materials for modern technologies. To that end, NETL is collaborating with the University of Kentucky and their subcontractor Virginia Tech to demonstrate a novel process that could see America’s coal country as a new supplier of these vital materials.
Ohio State TEP process
Innovations by researchers at Ohio State University have shown potential to deliver a supply of strategically and economically vital rare earth elements (REEs). REEs are used in everything from green energy applications and personal electronics to defense technology and smart car systems. Important as these elements are, China controls the lion’s share of the world market.
Laser-Induced Breakdown Spectroscopy Research Continues to Evolve at NETL
Laser-induced breakdown spectroscopy, or LIBS, is a rapidly advancing analytical technique that provides a cost-effective, quick and precise method for determining the elemental composition of any solid, liquid or gas sample.
table
To really understand a complex challenge, it pays to take a close look at the details. NETL researchers are taking this approach as they use X-ray photoelectron spectroscopy (XPS) to understand and characterize rare earth oxides on the atomic level. The pioneering research was recently selected for publication in the June edition of the journal Surface Science Spectra. To view the study, go here.
FOA Logo
Today, the U.S. Department of Energy (DOE) and NETL have announced up to $87.3 million in federal funding for cost-shared research and development (R&D) projects for advanced coal technologies and research. DOE Assistant Secretary for Fossil Energy Steven Winberg announced this R&D funding at the Annual Project Review Meeting for Crosscutting, Rare Earth Elements, Gasification, and Transformative Power Generation at the National Energy Technology Laboratory.
Regional Workforce Initiative
The National Energy Technology Laboratory’s (NETL) Regional Workforce Initiative will present a free Energy 101 Webinar at 1 p.m. Thursday, March 28. The on-line event is designed to inform participants about evolving technology solutions related to rare earth elements (REEs) and advanced composites/materials and manufacturing and their potential economic development impact on the Appalachian Region.
FOA Announcement Logo
The U.S. Department of Energy’s (DOE) Office of Fossil Energy (FE) has issued a Notice of Intent (NOI) for a Funding Opportunity Announcement (FOA) focused on recovering rare earth elements (REE) and critical materials (CM) from domestic coal  resources, using novel and conventional extraction, separation, and recovery processes.
REE Research image
An NETL-managed project is making impressive progress toward developing a state-of-the-art facility to produce a domestic supply of valuable mixed rare earth compounds from coal and coal byproducts. Fifteen lanthanide elements within the periodic table, including scandium and yttrium, are referred to as rare earth elements (REEs). They are essential components in many modern technologies — including cell phones, medical devices and national defense systems — yet challenging to extract, with China providing the bulk of the world’s supply.
Dr McMahan Gray
NETL’s McMahan Gray, a physical scientist in Pittsburgh, has been named a recipient of a 2018 Innovation Award from The Pittsburgh Business Times. The honor, to be bestowed at a special ceremony later this year, recognizes extraordinary advances that challenge conventional thinking Gray is being honored for his work developing an effective, efficient and environmentally friendly technology that can remove carbon dioxide from air, remove lead from water, and recover rare earth elements (REEs) from water and waste streams.
1022 REE
Rare earth elements (REEs) – an integral component of high-technology products from smart phones and lasers to computer hard drives, medical devices and national defense systems – are not that rare, they just appear in miniscule concentrations in a variety of sources, including water. NETL researchers have developed a way to effectively filter water from oil and natural gas well flowbacks, industrial waste streams, acid mine drainage and even municipal drinking water to recover valuable REEs.