Back to Top
Skip to main content

High Performance Materials

Materials Program Readies New Materials for Service in Traditional and Novel Applications


The High-Performance Materials program drives to characterize, produce, and certify cost-effective alloys and high-performance materials suitable for extreme environments that are found in fossil-based power-generation systems. NETL supports and catalyzes a robust domestic materials supply chain that prepares materials for Advanced Ultra-Supercritical Steam Cycles (AUSC) and spinoff applications.

Transformational power technologies, like AUSC and supercritical carbon dioxide (sCO2) have the potential to increase efficiencies and bolster clean coal efforts. However, these systems operate at higher temperatures and pressures leading to more corrosive and harsher environments when compared to traditional power plants. Additionally, the existing fleet is increasingly subjected to cycling conditions due to the penetration of renewable energy sources onto the electricity grid. Cycling adds stress to the materials of construction, because the plants were not designed for the extreme changes in temperature and pressure brought on by cycling conditions.

The Crosscutting Materials program works to accelerate the development of improved steels, superalloys, and other advanced alloys to address challenges of both the existing fleet and future power systems. Materials of interest include those that enable components and equipment to perform in the high-temperature, high-pressure, corrosive environments of an advanced energy system with specific emphasis on durability, availability, and cost.

Research Areas:


Interact with the High Performance Materials Program!


NETL Involvement

NETL supports an AUSC Component Testing Consortium, a 15-year effort supported by the U.S. Department of Energy, Ohio Coal Development Office, and industry partners. The consortium is working to develop materials for boiler and steam turbines for AUSC Coal Plants. The current effort is completing manufacturing trials, R&D, ASME code cases, and techno-economic analysis to ready the domestic supply chain to support AUSC power plant construction.


The eXtremeMAT project addresses the materials of construction challenges by harnessing the unparalleled computational and experimental materials science expertise and capabilities within the DOE national laboratory, into an integrated team aimed at improving heat-resistant alloys. NETL leads the consortium with partner laboratories, Ames Laboratory, Idaho National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory. Check out eXtremeMAT’s website here to learn more.


The Crosscutting program also participates in the multi-year collaboration with the United Kingdom's Department for Business, Energy, & Industrial Strategy (BEIS) and DOE on fossil energy technologies with a strong emphasis on materials. The partnership’s objective is to share and develop knowledge and expertise in high-temperature materials for advanced fossil energy power plant applications. You can read more about the partnership goals, objectives, and accomplishments here.


DOE Fossil Energy supports the High-Performance Computing for Materials (HPC4Mtls) program as part of DOE’s High-Performance Computing for Energy Innovation Program. HPC4Mtls accelerates industry discovery, design, and development of materials in energy technologies by enabling access to computational capabilities and expertise in the DOE laboratories. To learn more about the program and current solicitations click here.

Additional Links and Resources


NETL researchers develop and maintain the Energy Data eXchange (EDX) to support private collaboration for ongoing research efforts, and technology transfer of finalized DOE and NETL research products. EDX offers a secure environment for multi-organizational research teams to share, build and collaborate online tools, data, and information. EDX platform can be reached here.

NETL’s Systems Energy Analysis group conducts a variety of energy analyses to identify and evaluate promising R&D opportunities. Check out their website for specific Materials analysis and other technology related studies.

Explore the Site


NETL implements this effort as part of DOE’s Crosscutting Research Program.

Technology area contact:
Robert Schrecengost

HQ Program Manager:

Regis Conrad