Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Sort ascending Patent Information Opportunity
Transpiration Purging Access Probe for Particulate Laden or Hazardous Environments USPN 8,896,798

Addressing the need for sensors that tolerate dirty environments, research is currently active on the technology "Transpiration Purging Access Probe for Particulate Laden or Hazardous Environments." This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy's National Energy Technology Laboratory.

Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process USPN 9,523,499

This technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Distributed Optical Sensor for CO2 Leak Detection USPN 8,786,840

Research is active on the patented technology "Distributed Optical Sensor for CO2 Leak Detection". This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas USPN 8,920,526

Research is active on the patented technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Radial Flow Pulse Jet Mixer USPN 8,469,583

Research is currently active on the patented technology "A Process for the Mixing of Heavy Solid Particulate Matter in a Lighter Liquid Carrier Fluid Using an Inverted Pulsed Jet Mixing Apparatus." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Visible Light Photoreduction of CO2 Using Heterostructured Catalysts USPN 8,986,511

Research is currently active on the patented technology "Visible Light Photoreduction of CO2 Using Heterostructured Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Superalloy Surface Treatment for Improved Metal Performance USPN 9,428,825

Research is active on the technology, titled "Method to Improve Superalloy Resistance by Surface Treatment." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Improved Martensitic Steel for High Temperature Applications USPN 8,246,767; USPN 8,317,944

Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts USPN 8,142,756

Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles USPN 7,992,718

Although research is currently inactive on the patented technology "Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles," the technology is available for licensing from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

Disclosed in this patent is a method of particle separation from a feed stream comprised of particles of varying hydrophobicity by injecting the feed stream directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. The current invention allows the height of the feed stream injection and the reflux ratio to be varied to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions or other considerations. This novel method provides a high degree of particle collection with reduced carryover of lower hydrophobic or hydrophilic particles to the froth overflow, reduces or eliminates reliance on a clean wash-water supply, allows capture of coarse particles beyond the upper limiting size for liquid injection columns, allows capture of fine particles while mitigating the tendency of the low inertia particles to follow bubble streamlines and avoid capture, and provides other benefits over previously used methods of capture.