Back to Top
Skip to main content
NETL Logo

Available Technologies

Title Date Posted Sort ascending Patent Information Opportunity
Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process USPN 9,523,499

This technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Radial Flow Pulse Jet Mixer USPN 8,469,583

Research is currently active on the patented technology "A Process for the Mixing of Heavy Solid Particulate Matter in a Lighter Liquid Carrier Fluid Using an Inverted Pulsed Jet Mixing Apparatus." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Superalloy Surface Treatment for Improved Metal Performance USPN 9,428,825

Research is active on the technology, titled "Method to Improve Superalloy Resistance by Surface Treatment." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).

A Unique Split Laser System for Environmental Monitoring USPN 7,421,166; USPN 8,786,840; USPN 8,934,511; USPN 9,297,696; USPN 9,548,585

Researchers at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) have developed a novel split laser system for in situ environmental monitoring via Laser Induced Breakdown Spectroscopy (LIBS) or Raman analysis.  The design features fiber-coupled, optically-pumped, passively Q-switched lasers that are small, portable, low cost and robust enough for even downhole applications.  The technology can be used in a wide array of applications, including, but not limited to, carbon dioxide (CO2) monitoring for CO2 sequestration, oil and gas monitoring, and water analysis (groundwater and municipal systems).  The technology is available for licensing and/or further collaborative research with NETL.

Proof of concept experimentation has been completed. NETL researchers are continuing to design miniaturized lasers and optical delivery systems to allow further size and cost reductions. The researchers have identified the need to complete and demonstrate both single point and multipoint measurement prototypes.  The results would further validate the technology and expedite its deployment to the private sector. 

Poly (Hydroxyl Urethane) Adhesives and Binders from CO2-Based Intermediates USPN 9,243,174

Research is currently inactive on the patented technology "Poly (Hydroxyl Urethane) Compositions and Methods of Making and Using the Same." The technology is available for licensing from the U.S. Department of Energy's National Energy Technology Laboratory.

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture USPN 8,834,822

Research is currently active on the patented technology titled, "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

High Capacity Immobilized Amine Sorbents USPN 7,288,136

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 titled "High Capacity Immobilized Amine Sorbents."

Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO2) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO2 capture systems.

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures USPN 6,908,497

The Department of Energy’s National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497, titled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures."

Disclosed in this patent is a new low-cost carbon dioxide (CO2) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or physisorption between layers of the substrate lattice. The polar amine liquids are located within these layers. This method eliminates the need for high surface area supports and provides absorption capabilities independent of the sorbent surface area, and can be regenerated.