Research is active on the development of a chromia refractory brick composed principally of Cr2O3, Al2O3, and carbon deposits for operation in the slagging environment of a gasifier operating at temperatures between 1250°C and 1575°C, pressures between 300 and 1000 psi, and oxygen partial pressures between 10-4 and 10-10. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL).
Research is active on the development of techniques for the economic recovery of valuable metals from petroleum gasification waste products. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
The Department of Energy’s National Energy Technology Laboratory (NETL) is seeking collaborative research partners and/or licensees interested in implementing a patented gas sensing system technology. The patent is jointly owned by NETL and the University of Pittsburgh, with the University handling the licensing. NETL would work with a potential licensee and the University to license the technology.
Described in this patent is a gas analyzing sensor that characterizes gaseous fuel, exhaust gases, or other process gas streams. The sensor reports concentrations of all majority gases to 0.1% in 1 second or less, and can be used for real-time gas analysis and system control. The sensor relies on novel techniques to enhance usually weak spontaneous Raman emissions from the gases being sampled, enabling the application of Raman spectroscopy to rapid gas analysis. The invention provides a gas composition measurement system that is fast, accurate, cost effective, and capable of continuously measuring the concentrations of gases in a mixture such as natural gas, at elevated system pressures.
Research is active on the development of sensors for use in the detection and quantification of rare earth elements in coal waste by-product streams. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Research is active on the development of sensors for use in early detection and quantification of corrosion degradation. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Research is active on the development of regenerable bimetallic oxygen carriers for use in methane conversion to hydrogen combined with chemical looping combustion systems. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Research is active on the technology titled, “Method of Forming Catalyst Layer by Single Step Infiltration.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Research is active on the patent pending technology titled, “MSE-Based Drilling Optimization Using Neural Network Simulation.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Research is active on the technology titled, “Mechanical Membrane for the Separation of a Paramagnetic Constituent from a Fluid.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.
Research is active on the technology titled,“Sulfur Tolerant Ionic Liquid Solvent for Pre-combustion Carbon Capture.” This invention is available for licensing and/or further collaborative research from U.S. Department of Energy’s National Energy Technology Laboratory.