Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Opportunity Sort descending
Polyphosphazene Blends for Gas Separation Membranes U.S. Patent Pending; USPN 7,074,256

These technologies are high-performance CO2 separation membranes made from polyphosphazene polymer blends.  NETL’s technology was originally developed to aid in separating CO2 from flue gas emitted by fossil-fuel power plants. The NETL membrane is cross-linked chemically using low intensity UV irradiation, a facile technique that improves the membrane’s mechanical toughness compared to its uncrosslinked polyphosphazene constituents. Membranes fabricated with this technique have demonstrated permeability of up to 610 barrer, with CO2/N2 selectivity in excess of 30, at a practical separation temperature of 40°C. NETL’s patent-pending technology is being bundled with Idaho National Laboratory’s (INL) patented technology, with NETL handling licensing.  NETL would work with a potential licensee and INL to license the technology. 


Challenge: 
Membrane-based separation is one of the most promising solutions for CO2 removal from post-combustion flue gases produced in power generation. Technoeconomic analyses show that membranes aimed for this application must possess high gas permeability; however, most high permeability materials suffer from poor mechanical properties or unacceptable loss in performance over time due to physical aging. This technology is a successful attempt to turn one of these high-performance materials with poor mechanical properties into one amenable for use in practical separation membranes with virtually no physical aging issues.
 

Encapsulation Method for More Durable Reactive Materials U.S. Patent Pending

This invention describes a method of encapsulating reactive materials (i.e., catalyst, sorbent or oxygen carrier) within a porous, unreactive, strong outer layer to increase attrition resistance while retaining sufficient reactivity. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Processes that involve fluidized bed or transport reactors require pellets with high attrition resistance because the pellets move continuously in the reactor during operation. Loss of pellets due to attrition contributes to high replacement costs and operational difficulties. Most processes that involve catalyst, sorbents and oxygen carriers operate in fluidized beds or circulating fluidized beds and require high attrition resistance for long-term operations. In addition, loss of reactive materials with low melting points, such as CuO, due to agglomeration is an issue. Pellets with high attrition resistance are needed to combat against loss of reactive materials.

Producing Hydrogen from Coal Via Catalytic/Chemical Looping Processes U.S. Patent Pending

This invention describes a novel catalytic method combined with a chemical looping process to produce a hydrogen (H2)-rich synthesis gas (syngas) stream free of the nitrogen from coal. The catalytic process uses reduced metal oxide/coal/steam to produce a H2-rich syngas stream that is free of nitrogen (N2) from coal while the chemical looping combustion (CLC) of fuel with the metal oxide is used for production of the heat required for the catalytic process. CLC processes also produce a concentrated stream of carbon dioxide (CO2) that is ready for sequestration. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Traditional coal gasification requires an expensive air separation unit to produce N2-free syngas. However, NETL’s novel catalytic process using reduced metal oxide/coal/steam does not require an air separation unit for production of nitrogen free syngas stream. Heat is traditionally produced via fuel combustion, which generates a CO2 stream mixed with N2. This stream requires expensive separation technologies for CO2 sequestration. The novel catalytic process uses the heat from CLC of fuel, which generates a sequestration ready CO2 stream. Integration of the processes, addressing contaminant issues and scaling up the technology for commercialization are necessary.

Fiber Optic pH Sensor for High-Temperature and High-Pressure Environments U.S. Patent Pending

This invention describes a pH sensor comprising an optical fiber coated with metal-oxide based pH sensing materials for use in high-temperature and high-pressure environments such as wellbores and the challenging high pH range relevant for wellbore cement. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
Various fossil energy and carbon management applications require chemical composition monitoring in subsurface environments. Examples of these areas include deep and ultra-deep oil and gas resource recovery through drilling and hydraulic fracturing techniques as well as environmental monitoring in reservoirs for carbon dioxide (CO2) sequestration. Accurate measurement of pH in subsurface wellbores is critical for early corrosion detection and wellbore cement failure prediction.
However, these subsurface environments are extremely challenging for the development and deployment of sensing technologies because of harsh conditions such as high temperatures, high pressures, corrosive chemical species, and potentially high salinity. In such harsh environments, most electrical and electronic components used in sensor applications are not feasible. Additionally, real-time monitoring of pH within cement is challenging because the high-pH range (pH ~13) can cause stability issues of commonly used pH sensing materials at high temperatures. Therefore, it is essential to develop approaches that provide stable pH sensing and that could eliminate the use of electrical components and connections at the sensing locations and avoid the common mode of failure in conventional sensors.
 

Single-Step Synthesis of Carbon Capture Fiber Sorbents U.S. Patent Pending

This invention describes a single-stage preparation of a novel carbon capture fiber sorbent. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
Conventional pressure- or temperature-swing adsorption (PSA/TSA) processes have been widely considered for post-combustion carbon capture and direct air capture (DAC). However, the processes of pressurizing the flue gas in the case of PSA or the long regeneration time in the case of TSA are considered neither cost-effective nor energy efficient, which limit their use in large-scale carbon capture processes. Furthermore, the high heat released during carbon dioxide (CO2) adsorption onto conventional sorbent amine sites necessitate efficient heat redistribution away from the sorbent bed and back into the overall carbon capture process. Therefore, a low-cost and energy efficient carbon capture process that could be retrofitted onto existing power plants is needed.

Corrosion Detection Sensors for Use in Natural Gas Pipelines U.S. Patent Pending

This invention describes a system and method for detecting corrosion in natural gas pipelines using an optical platform or a wireless platform. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

The U.S. Energy Information Administration states that natural gas accounts for nearly 30 percent of energy consumption in the United States. More than 300,000 miles of natural gas transmission and gathering lines deliver this valuable energy source to consumers. Like any energy infrastructure, this network of pipelines requires significant maintenance costs. In the case of natural gas pipelines, corrosion accounts for around 25 percent of incidents over the last 30 years, 61 percent of which was caused by internal corrosion.

The corrosion-related annual cost for such incidents amounts to $6 to $10 billion in the United States each year. Therefore, a need exists to monitor corrosion inside of the gas pipelines to implement corrosion mitigation and control before any failure.

Metal-organic Framework Films for Gas Sensor Applications U.S. Patent Pending

This invention describes a system and method for rapid, ambient-temperature growth of metal-organic framework (MOF) films for gas sensor applications. More specifically, the invention relates to growth of MOF films on advanced sensor devices such as distributed optical fiber and passive wireless like surface acoustic wave-based sensors. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

MOF thin films have emerged as particularly attractive candidates for gas sensing applications due to their tunable porosity and pore size, enabling them to be rationally designed to selectively absorb specific gasses of interest. MOFs are especially appealing due to their high selectivity and capacity for energy-relevant gasses such as carbon dioxide and methane. A critical step towards the development of MOF thin film devices is the ability to efficiently and reliably incorporate high-quality MOF layers onto a wide range of substrates like optical fibers. However, current techniques are often inconvenient due to long reaction times, heating requirements, equipment costs and/or poor control over crystal coverage and morphology.

Rotational Mechanical Gas Separator USPN 11,185,811

This invention describes a technology for separating liquid and solid phase substances from a gas stream. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
The removal and sequestration of carbon dioxide (CO2) from gas streams has been extensively researched, and many methods of separating CO2 have been proposed. These include adsorption monoliths, membrane absorption and cryogenic distillation, but such methods require special materials and/or high maintenance. Other state-of-the-art removal techniques, such as centrifugal stratification, compress CO2 into a liquid or solid phase, then remove it from the gas stream. But during removal, the liquid/solid phases travel through flow fields and their viscous heating effects. This causes the liquid/solid phases to re-vaporize, stymieing separation efforts.

Bottom-Up Assembly of Graphene Quantum Dots to Form Two-Dimensional Amorphous Carbon Film U.S. Patent Pending

This invention describes a uniquely engineered 2-D amorphous carbon film and a memristor fabricated with coal-derived carbon quantum dots as the dielectric (switching) media for resistive random-access memory (RRAM). The atomic dielectric carbon layer can provide large storage density and 3-D packing ability, allowing memory and logic devices to be integrated in one chip, providing faster data processing with low energy consumption. This patent application is jointly owned by NETL and the University of Illinois-Urbana Champaign (UIUC) and it is available for licensing and/or further collaboration.

Challenge
Memory is essential to future computing with the exponential growth of data. These emerging memory technologies aim to revolutionize the existing memory hierarchy. Various emerging memory technologies are actively being investigated to meet ideal performance characteristics. RRAM has various advantages such as easy fabrication, simple metal-insulator-metal structure, excellent scalability, nanosecond speed, and long data retention. RRAM has been commercialized since 2013. Despite showing great promise over conventional RAM and its popularity in academia, RRAM has not become commercially popular. This is due to high device variability and high operation voltage.

Creep Resistant Ni-Based Superalloy Casting and Manufacturing U.S. Patent Pending

This invention describes an improved casting and manufacturing method for a creep-resistant nickel-based superalloy for advanced high-temperature applications. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge
In the future, advanced ultra-supercritical (A-USC) and/or supercritical carbon dioxide (sCO2) power plants are expected to raise efficiencies of coal-fired power plants from around 35 to greater than 50%. However, these advanced systems feature components that operate at high pressures and temperatures exceeding 760 degrees Celsius. These conditions cause gradual permanent deformation, known as creep, in components manufactured with currently used alloys like ferritic-martensitic high-strength steels and austenitic stainless steels.
Certain nickel-based super alloys such as Inconel 740H (IN740H) currently meet requirements for use in A-USC in a wrought version, but using the alloy in a cast form would be valuable in terms of the range of component size, geometries and complexities, and cost.
Previous efforts at casting IN740H have resulted in poor creep performance when compared to wrought versions. Furthermore, several compositions within the nominal specified range for IN740H have been investigated but failed to provide a material in the as-cast form that would withstand long-term, high temperature exposure in creep.