Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Opportunity Sort descending
Real-Time Wellbore Monitoring for Kick Detection USPN 10,253,620

Research is currently active on the patented technology titled, "Kick Detection at the Bit Using Wellbore Geophysics." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture USPN 8,834,822

Research is currently active on the patented technology titled, "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Selective Hydrogen Monitoring Using Nanoparticle-Based Functional Sensors USPN 9,696,256

Research is currently active on the patented technology titled, “Noble and Precious Metal Nanoparticle-Based Sensor Layers for Selective H2 Sensing.” This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts USPN 8,142,756

Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

Novel Bimetallic Oxygen Carriers for Use in Chemical Looping Combustion USPN 9,557,053; USPN 10,030,204

Research is currently active on the technology titled, "Metal Ferrite Oxygen Carriers for Chemical Looping Combustion of Solid Fuels." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Poly (Hydroxyl Urethane) Adhesives and Binders from CO2-Based Intermediates USPN 8,912,303; USPN 9,243,174

Research is currently inactive on the patented technology "Poly (Hydroxyl Urethane) Compositions and Methods of Making and Using the Same." The technology is available for licensing from the U.S. Department of Energy's National Energy Technology Laboratory.

Heat Recirculating Cooler for Use in Fuel Gas Sulfur Removal USPN 7,442,353

Research is currently inactive on the patented technology titled, "Heat Recirculating Cooler for Fluid Stream Pollutant Removal.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

High Efficiency Electrocatalytic Conversion of CO2 to CO USPN 9,139,920

Research is in progress on the development of ligand-protected gold (Au25) cluster nanocatalysts for the electrocatalytic conversion of carbon dioxide (CO2) to carbon monoxide (CO). A few technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

A Unique Split Laser System for Environmental Monitoring USPN 7,421,166; USPN 8,786,840; USPN 8,934,511; USPN 9,297,696; USPN 9,548,585

Researchers at the U.S. Department of Energy’s National Energy Technology Laboratory (NETL) have developed a novel split laser system for in situ environmental monitoring via Laser Induced Breakdown Spectroscopy (LIBS) or Raman analysis.  The design features fiber-coupled, optically-pumped, passively Q-switched lasers that are small, portable, low cost and robust enough for even downhole applications.  The technology can be used in a wide array of applications, including, but not limited to, carbon dioxide (CO2) monitoring for CO2 sequestration, oil and gas monitoring, and water analysis (groundwater and municipal systems).  The technology is available for licensing and/or further collaborative research with NETL.

Proof of concept experimentation has been completed. NETL researchers are continuing to design miniaturized lasers and optical delivery systems to allow further size and cost reductions. The researchers have identified the need to complete and demonstrate both single point and multipoint measurement prototypes.  The results would further validate the technology and expedite its deployment to the private sector. 

Rapid Gas Hydrate Formation Process USPN 8,354,565

The Department of Energy’s National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH4) or carbon dioxide (CO2). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling and better mixing between the water and the hydrate-forming gas. The result of the process is the continuous formation of gas hydrates with a greatly reduced induction time for gas hydrate crystal formation. This invention may have utility in natural gas / CH4 storage and transport, COsequestration, cold energy storage, transportation fuels, and desalination.