Back to Top
Skip to main content

Twitter Icon Linkedin Icon Facebook Icon Instagram Icon You Tube Icon Flickr Icon

If you have questions about NETL's Technology Transfer more information can be found here.
Title Date Posted Patent Information Opportunity Sort descending
Novel Bimetallic Oxygen Carriers for Use in Chemical Looping Combustion 9,557,053; U.S. Patent Pending

 

Research is currently active on the patent pending technology titled, "Metal Ferrite Oxygen Carriers for Chemical Looping Combustion of Solid Fuels." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Method For Synthesis of Poly (Ionic Liquid) Block Copolymers for Gas Separation U.S. Patent Pending

 

Research is currently active on the patent pending technology titled, "Phase Segregated Poly(Ionic Liquid) Block Copolymers for Gas Separation." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Field Deployable Method for Sensing Wet Gases U.S. Patent Pending

 

Research is currently active on the patented technology “Field Deployable Method for Sensing Wet Gases.” The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance 8,608,829

 

This patented technology, "Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance," consists of copper-palladium alloy compositions for hydrogen separation membranes that use less palladium and have a potential increase in hydrogen permeability and resistance to sulfur degradation compared to currently available copper-palladium membranes. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Researchers at NETL have identified the need for further materials performance testing to be completed for the alloy compositions described above. Performance testing would provide data related to membrane hydrogen permeability, flux, and membrane lifespan. Testing results would show the significance of the technological and economic impact of this technology compared to current hydrogen separation membrane technology. Results would also potentially validate the technology and allow for introduction into commercial industry.

The NETL Pittsburgh site has materials performance testing capabilities and is able to perform all the necessary tests. Approximately 320 hours of material performance testing is needed to test two most promising alloy compositions.

Novel Algorithm Enables Manufacture of Continuous Single-Crystal Fibers of Infinite Length U.S. Patent Pending

A patent-pending computer-control algorithm invented by the National Energy Technology Laboratory enables the manufacture of single-crystal optical fibers of potentially infinite length, with improved diameter control and faster growth, using a laser-heated pedestal growth (LHPG) system. These fibers can be used to fabricate sensors that can withstand the harsh environments of advanced energy systems. This technology is available for licensing and/or further collaborative research from NETL.

Challenge

Single-crystal optical fibers made of sapphire and other materials are only commercially available in short lengths of less than 2 meters. Using conventional technologies, length is limited by the finite size of the feedstock pedestal and equipment constraints that prevent supplying more feedstock material without compromising crystal quality. A robust technological solution is needed that allows replacement of the feedstock pedestal with minimum crystal defects and more consistent diameter for long single-crystal fibers. Other algorithms have been studied, but none has offered the ability to produce fibers of arbitrary length.

Novel Tri-Metallic Ferrite Oxygen Carriers Enhance Chemical Looping Combustion 9,797,594

A patented technology invented at the U.S. Department of Energy’s National Energy Technology Laboratory enhances chemical looping combustion by providing tri-metallic ferrite oxygen carriers that offer greater durability and better reactivity than traditional oxygen carriers. Tri-metallic ferrite oxygen carriers also eliminate agglomeration issues, improve reduction rates, and offer similar costs when compared to traditional oxygen carriers, with convenient preparation using readily available materials. This technology is available for licensing and/or further collaborative research from NETL.

Challenge

Chemical looping combustion (CLC) is a promising technology for coal-derived energy production that involves combusting fuel in nearly pure oxygen to simplify carbon capture. In CLC systems, oxygen is introduced to the system via oxidation-reduction cycling of an oxygen carrier. Traditional oxygen carriers such as CuO, Fe2O3, NiO, and CoO have disadvantages including low reactivity (Fe2O3), low melting point and high agglomeration (CuO), and health and environmental concerns (NiO). The development of new oxygen carriers with enhanced performance characteristics is required for successful deployment of coal CLC processes.

Constant Pressure High Throughput Membrane Permeation Testing System 8,821,614

A simple and rapid method for the screening of the permeability and selectivity of membranes for gas separation has been developed. A high throughput membrane testing system permits simultaneous evaluation of multiple membranes under conditions of moderate pressure and temperature for both pure gases and gas mixtures. The modular design, on-line sample analysis, and automation-competence of the technology provides a cost-effective approach to identify the optimal membrane for a given gas separation application. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.

Transpiration Purging Access Probe for Particulate Laden or Hazardous Environments U.S. Patent Pending

Addressing the need for sensors that tolerate dirty environments, research is currently active on the patent-pending technology "Transpiration Purging Access Probe for Particulate Laden or Hazardous Environments." This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy's National Energy Technology Laboratory.

Method for the Production of Mineral Wool and Iron from Serpentine Ore 8,033,140

Although research is currently inactive on the patented technology "Method for the Production of Mineral Wool and Iron from Serpentine Ore," the technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Spheroid-Encapsulated Ionic Liquids for Gas Separation 9,050,579

An innovative approach has been developed allowing the use of high viscosity for gas separations. The method involves the encapsulation of ionic liquids (ILs) into polymer spheroids, taking advantage of the gas-absorbing properties and cost-effectiveness of ILs, while circumventing known IL viscosity issues. Significantly, the process permits optimization or ‘tuning’ of the IL-containing spheroids for specific gas separation applications. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy’s National Energy Technology Laboratory.