Back to Top
Skip to main content
 
 
 

Available Technologies

Title Date Posted Patent Information Opportunity Sort descending
Streamlining The Process To Extract Lithium, Rare Earth Elements From Natural Brines U.S. Patent Pending

Research is active on the development and refinement of a process for the extraction of lithium (Li) and rare earth elements (REEs) from natural brines. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

Current leading technology to generate materials from natural brines requires a series of football field-sized slow evaporation ponds, as well as lengthy leaching, which takes approximately 18-24 months after leaving the well. Concentration processes of the selected materials require repeated pumping from one evaporation pond to another, followed by long-distance transportation (added expenses and carbon emissions) to a processing plant that generates the selected compounds by multiple carbonation steps by leaching. Current carbonation processes require various solid additives, including soda ash, lime, hydrochloric acid, organic solvent, sulfuric acid and alcohol. Several tons of additives may be required to produce only a ton of targeted material. Therefore, current operations are considered to be costly and environmentally harsh.

Simplified, Cost Effective Process for Extracting Lithium from Natural Brines USPN 10,315,926

Research is active on the development and refinement of a process for the extraction of lithium from natural brines. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment USPN 9,181,597; USPN 9,556, 503

Research is active on the development and refinement of metallurgical processes for improving alloy performance under extreme operating conditions found in fossil energy power plants. These inventions are available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Chromia Refractory Brick with Carbon Treatment for Resistance to Slag Penetration in Gasifier Environments USPN 9,598,318

Research is active on the development of a chromia refractory brick composed principally of Cr2O3, Al2O3, and carbon deposits for operation in the slagging environment of a gasifier operating at temperatures between 1250°C and 1575°C, pressures between 300 and 1000 psi, and oxygen partial pressures between 10-4 and 10-10. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory (NETL). 

Conversion of Carbon Dioxide to Carbon Monoxide or Synthesis Gas by Reforming or Gasification Using Oxygen Carriers/Catalysts U.S. Patent Pending; USPN 10,427,138

Research is active on the development of metal ferrite oxygen carriers/catalysts for use in processes that convert carbon dioxide (CO2) to carbon monoxide (CO) or synthesis gas by reforming or gasification. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Challenge

A variety of approaches have been employed to harness CO2 activation in order to produce useful products for chemical processes and to control greenhouse gas emissions. These approaches include catalytic dry reforming of methane, chemical looping dry reforming of fuel, and coal gasification with CO2.

CO and synthesis gas are very useful precursors for various chemical processes and can be used as a fuel for energy production. In catalytic dry reforming, the production of syngas from CO2 and methane is achieved in the presence of a catalyst that offers several advantages, such as mitigation of greenhouse gases emissions and conversion of CO2 and methane into syngas which can be used to produce valuable downstream chemicals. In chemical looping dry reforming, oxygen from an oxygen carrier or metal oxide is used for partial combustion of methane or coal to produce syngas or CO. The reduced oxygen carrier is then oxidized using CO2 to produce CO and oxidized oxygen carrier. In coal gasification with CO2, production of syngas from coal is achieved through the reaction of coal with CO2 instead of air or steam, which can be enhanced by the presence of metal oxide/metal promoters. Since the gasification process does not require steam, significant cost reductions would be expected. However, finding low-cost and efficient catalysts/oxygen carriers for these processes has been a major challenge, limiting their commercial success.

Conversion of Methane to Hydrogen and Synthesis Gas Using Bimetallic Oxygen Carriers USPN 10,513,436

Research is active on the development of regenerable bimetallic oxygen carriers for use in methane conversion to hydrogen combined with chemical looping combustion systems. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Sensors for Corrosion Monitoring in Harsh Environments U.S. Patent Pending

Research is active on the development of sensors for use in early detection and quantification of corrosion degradation. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Portable Luminescence-Based Sensor for Rare Earth Element Detection U.S. Patent Pending

Research is active on the development of sensors for use in the detection and quantification of rare earth elements in coal waste by-product streams. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Recovery of Metals from Petroleum Waste Byproducts USPN 10,323,298

Research is active on the development of techniques for the economic recovery of valuable metals from petroleum gasification waste products. This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.

Computational and Simulation-Based Tools for Drilling Optimization U.S. Patent Pending

Research is active on the patent pending technology titled, “MSE-Based Drilling Optimization Using Neural Network Simulation.” This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy’s National Energy Technology Laboratory.