Back to Top
Skip to main content
 
 
 
Project Ultra: Underwater Laser Telecommunications and Remote Access
Project Number
DE-FE0031857
Last Reviewed Dated
Goal

The objective of this project is to address bandwidth and parallelism deficiencies in currently available undersea wireless optical communications technologies. These goals will be achieved using tight beam focused free space optical networks of blue-green light amplification by stimulated emission of radiation (LASER) nodes distributed along the seafloor, allowing for a highly scalable network backbone connecting a wide array of residency sensors as well as command and control devices. Enabling residency for constant real-time monitoring and control will drastically increase operational efficiency and safety. This effort will include electronic/optical encoding optimizations, optical alignment technology improvements, marinization, and a demonstration of network scalability.

Performer(s)

Oceanit Laboratories, Inc., Honolulu, HI 96813
Lawrence Livermore National Laboratory (LLNL)

Background

According to the U.S. DOE, Enhanced Oil Recovery (EOR) is capable of increasing well recovery from 20–40% to 30–60% of original oil-in-place. Enabling this capability requires persistent and timely reservoir monitoring to understand reservoir response to EOR methods. Near real-time monitoring of reservoir response to EOR operations informs Operators to employ rapid reservoir optimization and intervention measures to increase productivity and reduce risk. Current reservoir monitoring suffers from seismic data collection and processing times that limit the number of mappings and timeliness of obtaining reservoir seismic mapping. This monitoring and control gap limits the effectiveness of EOR in the subsea.

Impact

Underwater Laser Telecommunications and Remote Access (ULTRA) technology is a transformational change that will greatly impact the EOR operational paradigm with the capability to monitor reservoirs in near real-time. This change is labeled as Near Real-time Reservoir Management (NRRM), which could be enabled by modifying existing 4D reservoir monitoring systems with a high data rate communication system that enabled rapid data exfiltration to the operator. 4D seismic monitoring enables temporal change detection of the 3D state of a reservoir, which enables the operator to view the dynamic response of the reservoir during waterflood or other EOR operation. This awareness will enable actions that can increase well productivity and reduce risk in operations to maintain a License to Operate.

Accomplishments (most recent listed first)
  • Completed project Kick Off Meeting
  • Completed Quarterly Research Performance Progress Report #1
  • Completed Quarterly Research Performance Progress Report #2
  • Completed Quarterly Research Performance Progress Report #3
  • Completed Quarterly Research Performance Progress Report #4
Current Status

Oceanit is currently developing the Optical Pointing System (TASK 4) for underwater laser communications. Various designed and built test systems are undergoing performance testing at the selected open ocean testing site. The ocean tests utilize acrylic housings and provide valuable data on ocean water quality and laser effectiveness.

Oceanit developed a multicolor concept of operations adapted to connecting a distributed ocean bottom node network. It is designed around providing simultaneous bi-directional data transmission at 100Mbit/s over multiple sequential and parallel links. 

Oceanit has identified a suitable offshore testing site. The test site is a quarter of a mile offshore and can provide hardline data and power connection back to shore for performance evaluation of ULTRA in a coastal ocean environment.

Oceanit has developed a beam stabilization system that maintains a point-to-point connection. This system compensates for relative movement as well as beam deflection due to environmental factors. An overview of how the system functions is shown in Figure 1.

Figure 1: Schematic of the corrective beam steering system.
Figure 1: Schematic of the corrective beam steering system.

Oceanit has developed an acquisition system for locating adjacent communications nodes through the use of specialized machine vision sensors. This system is only used during the initial link setup process or if the system needs to re-acquire the link for any reason.
Oceanit is performing in ocean tests of the various prototype subsystems associated with the project. These subsystems include the acquisition system, the stabilization system, and the watertight housings. The tests are being performed a quarter mile offshore as shown in figure 2, at a depth of 40 feet. This allows for rapid evaluation of various system components and concepts of operation. The site is also where the system will eventually be deployed for the first time so it represents the real world conditions it is likely to encounter.

Figure 2: Test site location at adjacent to Kilo Nalu
Figure 2: Test site location at adjacent to Kilo Nalu

Oceanit has developed a network topology for a deployable system that is able to interface with a number of internal systems while also linking the experiment to internet through a secure gateway as shown in figure 3. The system links two subnets with one to allow for access from anywhere in the world with an internet connection, and the second subnet handles all of the inter-device communication and data forwarding.

Figure 3: Network architecture for a multi-node configuration.
Figure 3: Network architecture for a multi-node configuration.

Per Amendment 0001 to this contract, Oceanit has provided the information for all foreign nationals working on and expected to be working on the project to the DOE Contract Specialist.
 

Project Start
Project End
DOE Contribution

$2,996,992.00

Performer Contribution

$ 2,250,000.00

Contact Information

NETL – William Fincham (William.Fincham@netl.doe.gov or 304-285-4268)
Oceanit – Ishan Mons (imons@oceanit.com or 808.531.3017 ext. 608)