Back to Top
Skip to main content
 
 
 
Project Ultra: Underwater Laser Telecommunications and Remote Access
Project Number
DE-FE0031857
Last Reviewed Dated
Goal

The objective of this project is to address bandwidth and parallelism deficiencies in currently available undersea wireless optical communications technologies. These goals will be achieved using tight beam focused free space optical networks of blue-green light amplification by stimulated emission of radiation (LASER) nodes distributed along the seafloor, allowing for a highly scalable network backbone connecting a wide array of residency sensors as well as command and control devices. Enabling residency for constant real-time monitoring and control will drastically increase operational efficiency and safety. This effort will include electronic/optical encoding optimizations, optical alignment technology improvements, marinization, and a demonstration of network scalability.

Performer(s)

Oceanit Laboratories, Inc., Honolulu, HI 96813
Lawrence Livermore National Laboratory (LLNL)

Background

According to the U.S. DOE, Enhanced Oil Recovery (EOR) is capable of increasing well recovery from 20–40% to 30–60% of original oil-in-place. Enabling this capability requires persistent and timely reservoir monitoring to understand reservoir response to EOR methods. Near real-time monitoring of reservoir response to EOR operations informs Operators to employ rapid reservoir optimization and intervention measures to increase productivity and reduce risk. Current reservoir monitoring suffers from seismic data collection and processing times that limit the number of mappings and timeliness of obtaining reservoir seismic mapping. This monitoring and control gap limits the effectiveness of EOR in the subsea.

Impact

Underwater Laser Telecommunications and Remote Access (ULTRA) technology is a transformational change that will greatly impact the EOR operational paradigm with the capability to monitor reservoirs in near real-time. This change is labeled as Near Real-time Reservoir Management (NRRM), which could be enabled by modifying existing 4D reservoir monitoring systems with a high data rate communication system that enabled rapid data exfiltration to the operator. 4D seismic monitoring enables temporal change detection of the 3D state of a reservoir, which enables the operator to view the dynamic response of the reservoir during waterflood or other EOR operation. This awareness will enable actions that can increase well productivity and reduce risk in operations to maintain a License to Operate.

Accomplishments (most recent listed first)
  • The optical system design was completed, July 2021
  • The electronic system design was completed, July 2021
  • Completed Milestone Report #B
Current Status

Oceanit is currently marinizing the ULTRA node prototypes, seen in figure 1, in advance of the planned ocean test at Kilo Nalu to demonstrate the capabilities of the technology. The completed prototype systems underwent compatibility testing at the University of Hawaii to ensure plug and play functionality at the selected open ocean testing site. The ULTRA node prototypes utilize acrylic housings populated with all the electronic, optical, and power systems required for operation. These tests will provide valuable data on ocean water quality and laser effectiveness.

Figure 1: ULTRA node prototypes at the testing and integration facility
Figure 1: ULTRA node prototypes at the testing and integration facility

 

Oceanit developed and integrated a multicolor free-space optical data transmission system adapted to connecting a distributed ocean bottom node network. It is designed around providing simultaneous bi-directional data transmission at 100Mbit/s over multiple sequential and parallel links. This subsystem is controlled by a bespoke electronics package, shown in figure 2, capable of accommodating a wide range of transmit and receiver wavelengths and architectures.

Figure 2: Tx/Rx Electronics and physical network layer
Figure 2: Tx/Rx Electronics and physical network layer

Oceanit has identified a suitable offshore testing site. The test site is a quarter of a mile offshore and can provide hardline data and power connection back to shore for performance evaluation of ULTRA in a coastal ocean environment.

Oceanit has developed and integrated a beam stabilization system that maintains a point-to-point connection. This system compensates for relative movement as well as beam deflection due to environmental factors. An overview of how the system functions is shown in figure 3.

Figure 1: Schematic of the corrective beam steering system.
Figure 3: Schematic of the corrective beam steering system.

Oceanit has developed and integrated an acquisition system for locating adjacent communications nodes using specialized machine vision sensors. This system is only used during the initial link setup process or if the system needs to re-acquire the link for any reason.

Oceanit is performing in ocean tests of the various prototype subsystems associated with the project. These subsystems include the acquisition system, the stabilization system, and the watertight housings. The tests are being performed a quarter mile offshore as shown in figure 4, at a depth of 40 feet. This allows for rapid evaluation of various system components and concepts of operation. The site is also where the system will eventually be deployed for the first time, so it represents the real-world conditions it is likely to encounter.

Figure 2: Test site location at adjacent to Kilo Nalu
Figure 4: Test site location at adjacent to Kilo Nalu

Oceanit has developed and integrated a network topology for a deployable system that is able to interface with several internal systems while also linking the experiment to internet through a secure gateway as shown in figure 5. The system links two subnets with one to allow for access from anywhere in the world with an internet connection, and the second subnet handles all of the inter-device communication and data forwarding.

Figure 3: Network architecture for a multi-node configuration.
Figure 5: Network architecture for a multi-node configuration.

Per Amendment 0001 to this contract, Oceanit has provided the information for all foreign nationals working on and expected to be working on the project to the DOE Contract Specialist.

Project Start
Project End
DOE Contribution

$2,996,992.00

Performer Contribution

$ 2,250,000.00

Contact Information

NETL – William Fincham (William.Fincham@netl.doe.gov or 304-285-4268)
Oceanit – Ishan Mons (imons@oceanit.com or 808.531.3017 ext. 608)