This contract is a multi-tasked project with an overall objective of developing a portfolio of technologies to address produced-water issues in a comprehensive manner.
Colorado School of Mines (CSM), Golden, CO
Results
The project has been completed. The final report has been completed on the two year Produced Water Management and Beneficial Use project that was overseen by the Colorado Energy Research Institute (CERI) at Colorado School of Mines, Golden, Colorado. Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB), Wyoming, and the chemistry of the water often makes it unsuitable for direct agricultural use, however, the water does hold potential for beneficial use mandating a water management strategy. The fundamental logic of this project was the recognition that no single treatment can be applied to all co-produced water from coal bed methane (CBM) operations. There are several unique challenges to the disposal of CBM water. The production of CBM water follows an inverse pattern compared to traditional wells (high to low). CBM wells need to maintain low reservoir pressures to promote gas production making the normal practice of re-injection counterproductive. The unique water chemistry of the produced water can reduce soil permeability, making surface disposal difficult. Finally, the produced water is potable, making it a valuable resource in the western US rather than an undesirable by-product, the usual case in traditional petroleum operations. Therefore, a variety of options were developed and evaluated to provide CBM operators with the most cost-effective and environmentally sound practices for co-produced water. While this project focused on the Powder River Basin of Wyoming, the management and treatment procedures can be exported to other CBM areas in the US.
Benefits
The opportunity to resolve the oil and gas industry’s growing problem with producing, handling, and treating produced water presents a potential double benefit to the Nation: boosting domestic hydrocarbon production while bolstering America’s fresh water supply.
The production of oil and gas—conventional as well as unconventional, notably coalbed natural gas (CBNG) extraction—also yields large volumes of water of varying quality. Due to this variability, there is no single treatment or handling scenario for all produced waters. Research by industry, government, and academia has provided treatment technologies and handling methods, usually with consideration for beneficial use. However, these approaches are frequently costly and often suitable for only one area or field. In addition, there is often no incentive to change current treatment methods, due to lack of market for the treated water or for the treatment byproduct.
As there is no single best method, producers do not have solid information on which treatment technique or which disposal method to use in a given produced-water scenario. The research in the produced-water arena is not easily accessible, often the chemistry and technical terminology make it difficult to understand, and many of the proven technologies in this area are considered too expensive. Thus, even though an appropriate solution may be available, it may not be utilized.
In response to this challenge, DOE’s Oil and Gas Environmental Solutions Program sponsors a comprehensive, integrated plan to address the issues related to treatment, handling, and beneficial use of produced water in a printed and/or electronic “cookbook” of best-management options and the benefits of utilizing these practices (including cost comparisons) for various scenarios. This long-term DOE project requires coordination with industry partners, national laboratories, universities, and other agencies or divisions as well as Federal and State governments working on this issue.
Summary
This project is focused on the Powder River Basin of Wyoming, with the assumption that successful management and treatment procedures can be exported to other CBNG areas.
The project milestones to date follow, broken down by task:
Multispectral satellite data were evaluated to determine if specific mineral species in the soils could be identified and associated with salt loading in the ground water beneath the Coal Creek pond. Analysis of ASTER data indicate dominance of epsomite (MgSO4*7H2O) in soils at the Coal Creek site which is consistent with water-quality changes measured beneath the pond. ASTER data may provide a useful tool to assess possible pond sites, but needs further evaluation. While this analysis did indicate a possible suite of specific mineral species, remote sensing data interpretations should be confirmed by soils analyses on the site.
To accomplish this goal a mobile facility was designed and constructed to test proposed treatment units under field conditions. The facility will allow correlation between performances of treatment units from different manufacturers, and during the testing phase allow manufacturers to fine tune their systems to the demands of coalbed methane. Basic longevity of treatment systems will also be documented to allow gas companies to choose performance based on comparable testing. Testing will involve beta units and final productions units would likely be improved versions.
The final report describes the need for testing, approach that will be used in testing, and the operating procedures for the testing facility. The test method includes a list of the critical test parameters, as provided by the Montana Department of Environmental Quality. This task was designed with 3 subtasks: 1) design and construct the mobile testing facility; 2) deploy the facility to a test site; and 3) apply the testing facility to treatment systems. The facility is completed and ready to be deployed to a test site. The first testing is currently scheduled for early spring, 2008.
The facility consists of a camper-style shell for a pickup truck, a small cargo trailer and instrumentation. The instrumentation allows continuous measuring and recording of water flow rates, specific conductivity, water temperature, sodium concentration, pH and oxidation/reduction potential. The facility is powered by a portable generator, solar panels and a power-take off from the pickup truck and it can be plugged in to a standard 120V outlet.
This project has been completed. The Final Report is available below under "Additional Information".
Funding
The project was selected under the Focused Research in Federal Lands Access and Produced Water Management in Oil and Gas Exploration and Development solicitation DE-PS26-04NT15460-00, issued January 2004.
$2,176,198
$549,402 (20% of total)
NETL - Jesse Garcia (jesse.garcia@netl.doe.gov or 918-699-2036)
CSM - Dag Nummedahl (nummedal@mines.edu or 303-384-2506)
Final Report [PDF-18.3MB]
Publications
Cramer, T. and D. W. Johnson, 2007, “Membrane gas transfer of methane and carbon dioxide in submerged coal deposits”, The North American Membrane Society Annual Conference, May 2007, Orlando, FL.
Pribyl, R., and M.A. Urynowicz, “The Effect of Swelling/Shrinkage on Gas Transfer Rates within Intact Cores of Powder River Basin Coals,” Rocky Mountain Section of the American Association of Petroleum Geologists, June 11-13, 2006. Billings, MT.
Colmenares, L.B., and M.D. Zoback, “Hydraulic Fracturing and Wellbore Completion of Coalbed Methane (CBNG) Wells in the Powder River Basin, Wyoming: Implications for Water and Gas Production,” AAPG Bulletin, 91, 51-67, 2007.
Ross, H.E., and Zoback, M. D., “Hydraulic communication between coalbeds and overlying sands in the Powder River Basin, Wyoming and Montana: Implications for reinjection of coalbed methane water,” American Geophysical Union, San Francisco, CA, December 11-15, 2006.
Ross, H. E. and Zoback, M. D., 2006, Sub-hydrostatic pore pressure in the Powder River Basin, WY and MT, and implications for re-injection of CBNG produced waters: AAPG-Rocky Mountain Section, Billings, MT, June 11-13.
Brinck, E. and Frost, C.D., submitted, Detecting infiltration and impacts of CBNG- produced water using strontium isotopes. Submitted to Ground Water, October 2006
Frost, C.D., and Brinck, E., “Strontium isotopic tracing of the effects of coal bed natural gas development on shallow and deep groundwater systems in the Powder River Basin, Wyoming,” Wyoming State Geological Survey Report of Investigations 55, p. 93-107, 2005.
Catherine Campbell, presentation on Subtask 2 for the University of Wyoming Graduate Student Symposium, Student Union, University of Wyoming, Laramie, WY, April 2006.
Wheaton, John R, and Brown, Terry, “Predicting changes in ground-water quality associated with coalbed methane infiltration ponds,” in Western Resources Project Final Report—Produced Groundwater Associated with Coalbed Natural Gas Production in the Powder River Basin, Wyoming State Geological Survey Report of Investigation No. 55, 2006.
Payne A., and Saffer, D.M., “Surface water hydrology and shallow groundwater effects of coalbed methane development, upper Beaver drainage, Powder River Basin, WY,” in Zoback, M.D. (Ed.), Wyoming State Geological Survey, Report of Investigations, V. 55, 2005.
D.A. Lopez, “Coalbed Methane Produced Water Disposal by Injection, PRB, MT,” Rocky Mountain Section of the American Association of Petroleum Geologists, June 11-13, 2006, Billings, MT.
Moon, P., S. Snyder, and T. Hayes, “Integrated Electrodialysis Process for CBNG Produced Water Treatment,” Paper No. 107248, abstract to AAPG Rocky Mountain Section, Jackson Hole, WY, June 11-13, 2006.
Hayes, T., P. Moon, and S. Snyder, “Electrodialysis for Cost-Effective CBNG Produced Water Treatment,” IPEC Conference, San Antonio, October 19, 2006.
Veil, J.A., “Overview of Water Disposal Regulations,” Produced-Water Project Meeting, Golden, CO, October 27-28, 2005.
Veil, J.A., “Environmental Policy and Regulatory Analysis Pave the Way for New Technology,” Produced Water Project Meeting, Golden, CO, January 5-6, 2005.