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Project Overview

Project Schedule
— 9/17/2009 to 9/16/2011
— Project tasks are complete; we are now working on the final report

Project Cost
— Funding: $950k DOE; $150k MTR and $ 90k Tetramer Technologies

— Actual costs through 5/31/11: $1,129,362
Project Manager — Rick Dunst
Project Milestones

— Confirm that composite membranes meet target performance — hydrogen permeance
of 200 gpu and H,/CO, selectivity of 10 with mixtures.

— Using actual membrane performance data, complete design studies that show the
membrane process has the potential to meet DOE program targets.

— Complete fabrication of bench-scale membrane modules and demonstrate module
performance/lifetime during simulated water gas shift (WGS) mixture testing.

— Finish data analysis, process optimization studies, and comparative economic

evaluation. MTH




Project Overview:
Objectives and Scope of Work

« Membrane development
— High-temperature stable polymers for use in H,/CO,
— Composite membranes that have H,/CO, >10 and H, permeance
>200 gpu at syngas cleanup temperatures (100-200°C)

 Membrane performance evaluation
— Evaluate membrane and lab-scale membrane module
performance using pure gases in the lab
— Evaluate membrane stamps using simulated syngas lab mixtures

* Process design analysis
— Optimize membrane process designs and assess the optimal
Integration of a membrane system
— Perform a cost analysis of the polymer membrane process vs.
current cleanup technologies, e.g., Selexol
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« Spiral-wound and hollow fiber modules are used.
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Syngas Cleanup Options
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* Hot syngas cleanup membranes offer the potential for process intensification
* Warm/cool syngas cleanup membranes offer fewer operating challenges




H,-Selective Membranes Offer Advantages
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H,-selective membrane advantages:

» Can operate warm/hot to reduce the need for heat exchange
» Can use nitrogen sweep to maintain permeate fuel gas at turbine pressure

» Water goes with fuel gas; reduces CO, dehydration costs
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New High-Temperature
Polymer Membranes Show Promise

Crosslinked modified

.
Upper bound? polyimides

NN

/ l PBI® (250°C)

0.1 1 10 100
H, permeance (gpu)

PBl-based
(mixed gas at 250°C)

MTR Proteus
(mixed gas at 150°C)

a) Robeson et al., IMS 320, 390-400 (2008); assumes a
1 um selective layer.

b) O’Brien K. et al., DOE NETL project fact sheet 2009;
assumes a 1 um selective layer.

c) Low, B.T., etal., Macromolecules 41(4), 1297-1309
(2008); assumes a 1 um selective layer.

d) Krishnan, G., 2010 NETL CO, Capture Technology
Conference, Pittsburgh, PA and Klaehn, J., et al.,

NAMS 2011, Las Vegas, NV.




High temperature improves performance
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» Membranes have very low permeance and modest H,/CO, selectivity at room temperature
» Increasing temperature improves permeance and selectivity; selectivity maximum?
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Temperature cycling gives reproducible results
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Significant Progress During this Project
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» Membrane performance at 50 psig, 135°C with a 50%/50% CO,/H, mixture




Development of Lab-scale Module
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Lab-scale prototype module
> Lab-scale prototype module: 12” length with a membrane area of 0.14 m?

» Module components were stable after cycling from 20 to 160°C
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Performance of Lab-scale Modules
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Performance of lab-scale module is consistent with performance of
membrane stamps. MTH




Field Tests at NCCC

* MTR pilot testing at the National Carbon Capture Center (NCCC) run by Southern
* Feed is coal-derived syngas at 180 psia shifted or unshifted and with or w/o sulfur MTH

14 compounds




NCCC Results 1:
Stable Performance with Desulfurized Syngas
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» Tests were conducted on membrane stamps (area = 30.2 cm?) with a coal-derived
syngas mixture at 150 psig and 135°C. Average H, permeance = 260 gpu and H,/CO,

15 selectivity = 16.
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NCCC Results 2:
Stable Performance with High Sulfur Syngas
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» Tests were conducted on membrane stamps with a coal-derived shifted syngas mixture containing 780
ppm H,S at 175 psig and 120°C or 135°C.

» H,/gas selectivities (CH,, N,, CO and H,S) are higher than H,/CO,; water permeates with H, MTH
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NCCC Results 3:
Module Field Tests
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» Tests were conducted on a membrane stamp and a membrane module with a coal-derived

Mixed-gas
H,/CO,
selectivity

35 [

30 [

25

20 [
15 [

10 [

Selectivity
40 r T T T T T T T T T T T T T T T T T T T T T
r 1
I
L : i
}
1
|
o | J
am |
™ 1
! ]
- 1 -
F HE 1
- 1 P
3 | 1 |
- | .
L ! J
|
1
< . ! ( )
— < > 1 N
: ;
Membrane Stamp |Membrane Module ]
at 135°C 1at 120°C
g : 1
|
:
P P IR BRI S| 1
10 15 20 25 30 35 40

Time (days)

shifted syngas mixture at 175 psig and 135°C and 120°C respectively.
» H, content was enriched from ~12% to ~ 80% for a membrane stamp and ~ 60% for a

17 membrane module.
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Key Field Test Findings

Bench and field tests show that the performance of MTR Proteus™
membranes exceeds the project targets.

NCCC field results demonstrate the membrane performance is
stable at high temperature (up to 150°C) treating coal-derived
syngas containing up to 780 ppm H,S.

Average field performance gives a mixed-gas H,/CO, selectivity of
15-25, and a hydrogen permeance of 150-300 gpu at 120-150°C.

10 Ib/h small module tests is on-going; full-scale modules require
500 Ib/h syngas.




A Possible Process Design
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N, sweep on H,-selective membrane greatly reduces energy requirements

CO,-selective membrane increases the operating temperature of the CO,
purification/liquefaction step — reduces material costs and process complexity MTH




Higher H,/CO, selectivity is beneficial
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Membranes can approach the DOE target
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Next Steps

Continue membrane improvements
Develop commercial-scale modules
Conduct relevant field tests

|dentify other H,/CO,, applications
where these membranes can be
used

Test membrane modules

at NCCC in 2011/12

— 10 Ib/h syngas run
— 50 Ib/h syngas run
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Summary

H,-selective membranes have greater potential for cost
and energy savings compared to CO,-selective
membranes

Current membranes show H,/CO, selectivities >20 with
H, permeances > 200 gpu

The best current design uses a hot H,-selective sweep
membrane combined with a cold CO,-selective
membrane to reduce CO, purification/liquefaction costs

Current membranes give an increase in LCOE of ~15%,
approaching DOE targets

Higher H,/CO, selectivity helps performance, especially
up to 20; above this value, higher H, permeance is more

beneficial MTH
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