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RTI International
Center for Energy Technology (CET)

RTI International
• Established in 1958
• One of the world’s leading research institutes
• >2,800 staff;  >$700M revenue (2008)
• Mission: To improve the human condition 

by turning knowledge into practice

CET Capabilities
• Advanced Gasification

– Warm gas desulfurization
– Multicontaminant removal
– Substitute natural gas production

• Carbon Capture
– Post- and Pre-combustion CO2 capture
– Chemical Looping Combustion
– Advanced Membranes

• Clean Fuels
– Syngas to fuels and chemicals
– Biofuels

• Hydrogen Production and Purification

Clean 
FuelsCarbon Capture

Catalyst/Sorbent 
Synthesis

CET Application Areas

Membrane 
Separations

Process 
Development 
and Scale-up
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Project Overview

• DOE/NETL Cooperative Agreement # DE-NT0005313
– DOE Project Manager:  José Figueroa
– RTI Project Manager:  Lora Toy

• Period of Performance
– October 1, 2008 – September 30, 2010

Project Phase Period of Performance DOE Share Cost-Share Total

Budget Period I 10/08 09/09 $974,298 $243,575

$242,631

$486,206

$1,217,873

Budget Period II 10/09 09/10 $970,523 $1,213,154

Totals 10/08 09/10 $1,944,821 $2,431,027

• Project Team
– RTI (Prime – Technology developer, membrane evaluation, management)
– Arkema Inc. (Polymer synthesis and development)
– Generon IGS, Inc. (Membrane module development and fabrication)
– ARCADIS, Inc. (Test skid operation)
– U.S. EPA (Test facility provider)
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CO2 Capture Membrane Process for Power 
Plant Flue Gas (CCM) Project

Overall Project Objective
Develop an advanced polymeric membrane-based process that can be cost-effectively and reliably 

retrofitted into existing pulverized coal (PC)-fired power plants to capture ≥90% CO2 from plant’s 
flue gas at 50-60 °C with <35% increase in Cost of Electricity.
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Membrane Approach
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Solution-diffusion mechanism
(i) Sorption on high-pressure side
(ii) Diffusion down partial pressure gradient
(iii) Desorption on low-pressure side
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p1 Advantages
• Passive separation

– Inherently energy-efficient

– No heating needed to recover CO2
(unlike adsorption and absorption 
processes)

• Simple to operate and maintain
– No moving parts

• Compact
• Modular

– Easy scalability

– Easy to retrofit into existing process 
infrastructures

• No secondary hazardous waste stream
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Challenges of CO2 Capture Application with 
Membrane Process

• Low CO2 concentration (~13-15%) 
in flue gas

• Low flue-gas pressure (~15 psia)

• Large flue gas volumes

• Presence of flue-gas moisture and 
contaminants (SOx, NOx, etc.)

• High cost and parasitic energy penalty 
for

– Flue-gas compression or vacuum
– Compression of separated CO2 from 

low pressure to sequestration pipeline 
pressure (~2,200 psia)

Example Single-Stage Membrane Process 
(~500-MW plant; ~800,000 acfm flue gas;

CO2 permeance ~ 100 GPU; CO2/N2 selectivity ~ 35)

Combustion
unit

Coal

Air (O2 + N2)
13% CO2

in N2
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55-60 °C;

>800,000 acfm)

Flue gas

Blower/
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Membrane
separation

unit

28% CO2
purity

To 
stack

90% CO2
removal

pfeed
(~3 bars)

Ppermeate
(1 bar)

Cooling

Vacuum blower/
Compressor train

N2 + 
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Liquid CO2
(high-pressure)

Pump

CO2 (≥2,200 psia)
to sequestration
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>800,000 acfm)

Flue gas

Blower/
Compressor

Cooling

Water/
Steam
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To 
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removal
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Ppermeate
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Cooling

Vacuum blower/
Compressor train

N2 + 
noncondensables

Liquid CO2
(high-pressure)

Pump

CO2 (≥2,200 psia)
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For 90% CO2 removal in single-stage process,
membrane area ~ 23 × 106 m2 (very large!) is 
required.

1 GPU = 1 × 10-6 cm3(STP)/(cm2·s·cmHg)
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Project Approach
Three Parallel Efforts
• Membrane materials development

– Novel fluorinated polymers
– Next-generation, high-flux polycarbonate
– Flux / Selectivity
– Chemical resistance

• Membrane module design and 
development

– Hollow fiber dimensions
– Module gas flow distribution
– Module sealing
– Module fabrication

• Process design and development
– Process variables
– Process design options
– Process integration
– Technoeconomic analysis

 

Roadmap of Technical Approach
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Specific Objectives and Task Structure

Project Tasks

• Task 1. Synthesize Novel Polymers / 
Prepare Membrane Films

• Task 2. Characterize Permeation Properties 
of Membrane Films

• Task 3. Produce and Characterize Membrane 
Hollow Fibers

• Task 4. Make and Characterize Prototype 
Hollow-Fiber Membrane Modules

• Task 5. Demonstrate Membrane Modules in 
Field Test

• Task 6. Perform Process Design / Technical 
and Economic Analysis

• Task 7. Manage Project / Prepare Reports

Specific Objectives
• Develop two or three new chemistries/structures of 

fluorinated polymer membrane materials that have 
– high CO2 permeance [300-3,000 GPU targeted] 
– high CO2/N2 selectivity [30-50 selectivity targeted]
– excellent chemical stability to moisture, SO2, and 

NOx

• Identify and develop power- and cost-effective CO2
capture membrane process design/integration 
strategies with refined membrane CO2 permeance 
and selectivity targets.

• Develop and fabricate improved membrane hollow 
fibers and membrane module designs designed to 
handle large flue-gas flow rates and high CO2
permeate flows

• Demonstrate CO2 capture membrane 
performance/reliability in field test with real coal-
fired process flue gas.
1 GPU = 1 × 10-6 cm3(STP)/(cm2·s·cmHg)



3/27/2009

9

www.rti.org

Membrane Materials Development
Arkema

• Polyvinylidene Fluoride (PVDF)-based 
polymers

– High resistance to acids and oxidants
– Specific affinity for CO2 and 

• High CO2 solubility due to high polar 
nature of VDF repeat unit

– Excellent physical and mechanical properties
– High thermal stability (Td ~ 340 °C)
– Durability and longevity

• PVDF homopolymer
– Semicrystalline

(Degree of crystallinity up to 65%)
– Crystalline phase reduces gas transport.
– CO2 permeance ~ 5 GPU*

(for 0.1-micron thickness)
– CO2/N2 selectivity ~ 23*

[strongly dependent on CO2 partial pressure 
(concentration)]
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μ
High dipole moment    Highly polar

* From El-Hibri and Paul, J. Appl. Polym. Sci., Vol. 31, 2533 (1986).
1 GPU = 1 × 10-6 cm3(STP)/(cm2·s·cmHg)
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Membrane Materials Development
Arkema

Approach #1
• Copolymerize bulky hexafluoropropylene

(HFP) monomer into VDF backbone.
– Bulky –CF3 disrupts crystallization, 

reducing crystallinity (down to <2%)
– Should increase gas transport in 

membrane
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Approach #2
• If crystallinity reduction not sufficient, then 

copolymerize new non-fluorinated 
monomers (e.g., vinyl esters, acrylic 
esters, etc.) with VDF to improve CO2
transport.

Approach #3
• Design composites (co-continuous 

phases) of low crystallinity and chemically 
modified PVDF with other compatible but 
not miscible polymers (i.e., PEO) to 
further enhance CO2 transport without 
compromising chemical resistance of 
PVDF.
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Next-Generation, High-Flux Polycarbonate (PC) Membrane
Generon

Relative 
CO2 flux

CO2/N2
selectivity

Generon Standard 
PC Membrane 1 20-30

Generon High-Flux 
PC Membrane 4.0-4.5 30-35

1 GPU = 1 × 10-6 cm3(STP)/(cm2·s·cmHg)

Thousands of miles of hollow fiber 
membranes make up each Generon®

membrane module.

Individual Generon® hollow 
membrane fibers are about the size 

of a human hair.
Standard Generon® module sizes range from 

100 to 10,000 ft2 (10 to 1,000 m2).
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Membrane Module Design/Development

• Two widely used module types for 
industrial gas separation membranes

– Hollow fiber
– Spiral wound

• Hollow-fiber module type selected
– Lower module cost per membrane area
– Substantially higher membrane packing 

density
– Pressure drop ca be an issue with CO2

capture application.
– Partner Generon specializes in 

hollow-fiber membranes and modules.

• Development areas to maximize 
performance

– Hollow fiber dimensions
– Gas flow distribution
– Development of epoxy tubesheet
– Module engineering design

End Plate
Epoxy Tube Sheet

Support Core

Feed Air O-Rings
Hollow Fibers

Oxygen-
Enriched Air

Epoxy Tube
Sheet

Enriched
Nitrogen
Product

Gas

End Plate
Epoxy Tube Sheet

Support Core

Feed Air O-Rings
Hollow Fibers

Oxygen-
Enriched Air

Epoxy Tube
Sheet

Enriched
Nitrogen
Product

Gas

Generon membrane module for air separation
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Bundle Making / Potting / Machining

Module Fabrication
Generon Facilities

Module Manufacturing

Dedicated Research Spin Lines 
for Hollow-Fiber Development 

(2,000 ft2)
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Process Design/Integration Parameters 
To Be Considered

• Both membrane area and cost vastly affected by 
membrane properties, process parameters, and process 
scheme.

– Compression/Vacuum
– Multi-step design
– Multi-stage design

• Optimization dependent on membrane area requirement 
and operating cost

• Need to look at multi-step and multi-stage process design

• Maximize power management 
(i.e., minimize parasitic energy losses)

System process design is conducted using an RTI membrane simulation tool 
that is integrated into AspenPlus process simulation software and its libraries.
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Example Multistage Membrane Process Scheme:
Preliminary Simulation Results
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Flue-gas flow = 800,000 scfm
CO2/N2 selectivity = 50
CO2 permeance = 1,000 GPU

1 bar
17% CO2

3 bars
18% CO2

3 bars
5.7% CO2

1 bar, 23% CO2

2.4% CO2

0.33 bar
52% CO2

10 bars
52% CO2

1.8% CO2

81% CO2 purity

1 bar

• ~89% CO2 removal
• Total Membrane Area = 3.3 × 106 m2

• Process cost analysis still to be done
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Single-Stage Membrane Process Simulation:  
Effect of Pressure Ratio [Constant permeate pressure 15 psia]

Single Stage
Shell Side Feed

Increasing 
P ratio

Increasing 
P ratio

Increasing P ratio decreases membrane area for a given CO2 removal.

Increasing P ratio significantly increases permeate-side CO2 purity.

Effect of increasing pressure ratio is significant at lower pressure ratios 
(3-5) compared to that at higher ratios (10-15).

Flue gas FR = 800,000 scfm
CO2 mole fraction = 0.13
CO2 Perm = 100 GPU
N2 Perm = 2.86 GPU
Permeate pressure = 15 psia
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Single-Stage Membrane Process Simulation:  
Effect of CO2 Permeance [Constant selectivity]

Single Stage
Shell Side Feed

Increasing CO2 permeance decreases the required membrane area proportionally.
(For 90% CO2 removal and w/ 10 times increase in CO2 permeance, membrane area decreases ~10-fold 
from 24 × 106 to 2.5 × 106 m2.)

CO2 purity decreases marginally with increasing CO2 permeance. 
(For 90% removal and 10 times increase in CO2 permeance, CO2 purity decreases from 28.5 to 27.5%.)

Flue gas FR = 800,000 scfm
CO2 mole fraction = 0.13
CO2/N2 selectivity = 35
Fp = 45 psia, Pp = 15 psia

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100
CO2 removal, %

M
em

br
an

e 
ar

ea
 x

 1
0^

6 
m

2

20

25

30

35

40

C
O

2 
pu

rit
y,

 %

100 GPU
300 GPU
500 GPU
1000 GPU

Increasing 
CO2 permeance

Increasing 
CO2 permeance



3/27/2009

18

www.rti.org

0

4

8

12

16

20

24

28

32

36

40

0 10 20 30 40 50 60 70 80 90 100
CO2 removal, %

M
em

br
an

e 
ar

ea
 x

 1
0^

6 
m

2

20

22

24

26

28

30

32

34

36

38

40

C
O

2 
pu

rit
y,

 %

100 GPU/Sel 35

300 GPU/Sel 105

500 GPU/Sel 175

1000 GPU/Sel 350

Single-Stage Membrane Process Simulation:  
Effect of CO2/N2 Selectivity [Changing CO2 Permeance]

Single Stage
Shell Side Feed

Increasing 
selectivity

Increasing 
selectivity

Increasing selectivity 10 times reduces membrane area only from 25 × 106 to 19 × 106 m2 for 90% CO2 removal.

Increasing selectivity enriches the permeate CO2 purity, for example, by 5% with 10 times increase in selectivity 
for 90% CO2 removal.

Flue gas FR = 800,000 scfm
CO2 mol frac in feed = 0.13
N2 perm = 2.86 GPU
Fp = 45 psia, Pp = 15 psia
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Process Design Analysis

• Analyze and compare various candidate 
process schemes

– Power consumption
– Membrane area requirement

• Estimate targets for membrane properties
– CO2 flux (permeance)
– CO2 selectivity
– Fiber dimensions

• Analyze pressure drop issues associated 
with high flue-gas flows and high CO2
permeate flows
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Effect of fiber ID
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90% CO2 removal
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Membrane Permeation Testing

• Membranes
– Generon polycarbonate-based 

hollow fiber membrane modules 
(current- and next-generation)

– Arkema novel PVDF-based 
membrane materials

 

Pressure
regulator

GC

Membrane
cell or 
module 

Feed

Permeate

To vent

Residue

Sweep

Metering
valve

MFC

MFC

Pressure 
gauge

Temperature
control

RTI membrane permeation apparatus

• Gases
– Pure gases (O2, N2, CO2, SO2)
– CO2/N2 gas mixtures with and 

without moisture, SO2, and NOx

• Feed pressure range:  10-200 psig 
• Temperature range: 25-60 °C
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Generon Loop-Cell Module:
Pure- vs. Mixed-Gas Selectivities

Generon Loop-Cell Module
(0.75 ft2 area)

Generon 210-Type Module 
(100 ft2 area)
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Generon loop-cell module-3
T = 25 C

Feed composition:  290 ppm SO2, 15% CO2, Balance N2
Membrane Area = 0.75 ft2 = 700 cm2
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Field-Test of CO2 Capture Membrane Modules

• Extended testing to investigate membrane 
module separation performance and 
structural stability

– Slipstream of real coal-fired process flue 
gas from EPA’s combustion facility 
(Research Triangle Park, NC) will be used.

– 300-hour field test will be completed.

– Membrane module skid previously used for 
a field test will be modified.

– Test skid will be based on optimized 
process design.

Previous membrane test skid built
(Skid footprint ~ 4 ft. × 6 ft.)
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Anticipated Challenges

• Low CO2 permeability
– Co-continuous block copolymer 

microstructures

• Low CO2/N2 selectivity
– Incorporate CO2 affinity chemical 

functionalities (polyethers, 
polyacrylamide, etc.)

• Susceptible to contaminants
– Increase degree of fluorination 

• Formation of defect-free hollow fibers
– Multiple fiber formation options will 

be considered

• Sealing of hollow fibers in module shell
– New epoxy tubesheet formulations will 

be developed

• Pressure drop issues
– Spin fibers of larger dimensions

• Flow distribution issues
– Fiber weaving process will be 

optimized

– Modify module housing design 
(gas port locations, baffles)
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Project Timeline

1 Synthesize Novel Polymers / Prepare 
Membrane Films (Arkema ) 12/1/2008 3/31/2010 1/1/2009

2 Characterize Permeation Properties of 
Membrane Films (RTI ) 2/1/2009 5/30/2010 2/7/2009

3 Produce and Characterize Membrane 
Hollow Fibers (Generon ) 1/1/2009 6/30/2010 11/1/2008

4
Make and Characterize Prototype 
Hollow-Fiber Membrane Modules 
(Generon )

1/1/2009 6/30/2010

5 Demonstrate Membrane Module(s) in 
Field Test (RTI/Arcadis ) 8/1/2009 6/30/2010

6 Perform Process Design / Technical and 
Economic Analysis (RTI ) 11/1/2008 9/30/2010 10/20/2008

6.1 Evaluate Membrane System Process Design 
Options 11/1/2008 11/1/2009 10/20/2008

6.2 Prepare Integrated System Process 
Desigh/Technical and Ecnomic 7/1/2009 9/30/2010

7 Reporting and Project Management 10/1/2008 9/30/2010 10/1/2008

Q2 Q3 Q4

Planned    
Start Date

Planned    
End Date

Actual     
Start Date

Budget Period 1               
(10/1/2008 - 9/30/2009)

Budget Period 2               
(10/1/2009 - 9/30/2010)

Project Duration — Start: 10/1/2008    End:  9/30/2010
Task 
No. Task Description

Q1 Q2 Q3 Q4Q1
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Path Forward

• Synthesize novel polymers and membrane films

• Produce membrane hollow fibers

• Fabricate lab-scale, hollow-fiber membrane modules

• Characterize permeation properties of membrane films and lab modules
– Pure-gas testing

– Simulated flue-gas testing

• Perform process design and technoeconomic analysis

• Make and characterize prototype (field-test) hollow-fiber membrane 
modules

• Design and construct membrane test skid for field testing

• Test prototype membrane modules with slipstream of real coal-fired 
process flue gas for extended time (e.g., 300 h) at EPA’s Multipollutant
Control Research Facility (MPCRF)
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Thank you

Questions?
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