Back to Top
Skip to main content
NETL Logo

The University of South Carolina will advance newly invented solid fuel (SF) bed SOFC technology for commercial applications in critical data center in-rack power systems. The new SOFC system combines an anode-supported tubular SOFC with an on-anode metal-bed. The in-situ reaction between the active metal bed and SOFC products (CO2 and H2O) produces a high concentration of local H2 to instantaneously compensate for fast-changing overload, which would otherwise damage the anode. Compared to the baseline cell performance, the new SOFC is expected to produce 30 percent more power with greater than 100 percent overload tolerance for a continuous 30-minute operation (>±15Wcm-2 min-1 power ramping rate and <0.5%/kh degradation for 1,500 hours). The project objectives are to develop robust SF-bed compositions active to metal-steam reactions, but resistant to sintering for expended operation through a systematic and comprehensive laboratory study and validate the developed SF compositions in pilot-scale cells at industrial partner sites. The new SOFC system will also be able to operate on alternative fuels such as renewable hydrogen, digester gas, and landfill gas.

image_plp
FE0031671
plp_DOD_share
Off
Presentations_plp
Principal Investigator
Kevin Huang
huang46@cec.sc.edu
Project Benefits

The SOFC Program is committed to developing efficient, low-cost electricity from natural gas or coal with carbon capture capabilities for distributed generation (DG) and central power generation applications; maintaining cell development and core technology research to increase the reliability, robustness, and durability of cell, stack, and system technology; and providing the technology base to permit cost-competitive DG applications and utility-scale systems with carbon capture capabilities.

Project ID
FE0031671