Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont, Ph.D. Nathan Andrews, Craig Nolen, Carolyn Day Southwest Research Institute

> Marc Portnoff Lalit Chordia, Ph.D. Thar Energy L.L.C.

> Wenting Sun, Ph.D. Georgia Tech

Subith Vasu, Ph.D. UCF

Sarah Monahan, Ph.D. Keith McManus, Ph.D. **GE-GRC**

Work supported by US DOE under DE-FE002401

Outline

- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

Oxy-Combustion

- Oxygen + fuel
- Direct fired sCO2 combustors have a third inert stream
- Challenge:
 - Mix and combust fuel without damaging the combustor

Current Objectives

- Design a 1 MW thermal oxy-fuel combustor capable of generating 1200°C outlet temperature
- Manufacture and assemble a combustor and test loop, and commission oxy-fuel combustor
- Evaluate and characterize combustor performance
 - Optical access for advanced diagnostics

Project Schedule

- Design Phase: June 2018
 - Combustor design
 - Loop design
- Manufacturing construction and commissioning: June 2018 – Dec. 2019
- Test and data collection: Jan 2020 March 2021

Outline

- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

Bench Top Reactor

- 1/4in diameter
- Continuous flow auto-ignition reactor
- Inlet conditions
 ~900°C and 200bar

Test Stand Loop Design

Oxy-fuel Test Reactor

- Machined from Haynes 230 bar stock
- Instrumentation standoff tubes welded to main combustor
- Two stage pre-heater to achieve 925°C combustor inlet
- Water jacketed gas sampling

Bench Top Reactor Temperature Profile

- Significant heat transfer within the reactor
- Auto-ignition occurred at a significantly lower temperature than predicted
- Combustion zone temperature calculated based on a constant heat flux assumption
- Combustion zone temperature well below design temperature
 - Sufficient fuel and oxidizer for 1100°C

Reaction Time Scales

- Time scales for premixed combustion
- **Combustion zone** • residence time was ~0.2s
- At these temperatures, • combustion and residence time scales are similar

Results Discussion

- Fuel and oxidizer were sufficient to raise outlet temperature to ~1100°C
- Why didn't it?
 - Mixing time
 - Chemical kinetics
 - Heat transfer and wall effects
- Auto ignition occurred at high concentrations of CO2 at ~620°C

Outline

- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

Cylindrical casing designed for 450 °C, 250 bar

Use of cooling flows reduces casing exposure temperatures for inlet blind flange

Stress highest near inlet connection to reinforcement collar, in blind flange, and near tube connections

Use of AN fittings directly machined into combustor case eliminates potential leak paths

Combustor Aero-Thermal Design

February 2018 Oxy-fuel Working Group

Limited data available – Current UCF and Georgia Tech projects

Chemical Reaction Kinetics

Current simulations employ mechanism created by Georgia Tech. Leverages 12 chemical species and 25 reactions.

February 2018 Oxy-fuel Working Group

Computational Design

- Early design efforts constrained by high inlet temperatures needed to operate in a recompression cycle ~900°C combustor inlet
- Recuperator technology unlikely to be able to support those temperature in the near future
- Lower inlet temperature allow for easier design of submerged aerodynamic components
- Auto-ignition, sudden expansion, trapped vortex and swirl type injection explored

Schematic of Combustor Design Concept

Range of CO2 Flow Splits to Primary Combustor & Bypass Cooling

Component	Mass Flow (kg/s)	
CH4	0.02	
02	0.08	
CO2 to combustor	0.6 - 0.8	
CO2 to bypass	0.925 – 0.725	
Total mass flow	1.625	

Aiming for $T_{adiabatic}$ = 2700-3000 F for

flame stability

Combustor Design Point

Component	Mass Flow (kg/s)	
CH4	0.02	
02	0.08	
CO2 to combustor	0.626	
CO2 to bypass	0.899	
Total mass flow	1.625	

- Design point for adiabatic flame temperature of 3000 F
- CO2 flow distributed as diluent or as bypass as shown above
- GE in-house spreadsheet tools used to determine effective area and combustor size

GE RANS Simulations

GE LES Simulations

GE Results

- 2in diameter combustor performed significantly better than 1.1in diameter
- Further variations in combustor sizing/residence time to be considered

Combustor Geometry

- 0.05" wide dilution cooling slots, 1" apart
- 16 swirling channels, 0.506"(h) x 0.207"(w), 40° radial swirl w/ 10°down angle
- 8 fuel injectors

CFD Domain and Setup

- Computational domain:
 - ¼ Domain w/ periodic boundaries
 - 1.125 MM elements
 - 5-6 Wall inflation layers
- CFD Modeling Setup:
 - Pseudo Steady State RANS, Realizable k- ϵ model, Standard wall function
 - Compressibility, Ideal Gas EOS, C_p polynomials, gas mixture rules
 - Pressure outlet @ 2% total pressure loss
 - Mass flow inlets

Design and Off-design CFD Boundary Conditions

- Design point simulations
- Off-Design: Unique problem of sCO2 oxyfuel combustion is the cold startup case
 - Roughly order magnitude change in density

	Design		
	Point	Cold Start	Fast Start
CO ₂ Mass Flow (kg/s)	1.53	1.02	1.02
Pressure (bar)	200.00	133.33	133.33
CO ₂ Inlet Temp (°C)	700	50	150
CO ₂ Density (kg/m^3)	104.2	649.4	203.5
O ₂ Mass Flow (kg/s)	0.0806	0.0806	0.1360
CH ₄ Mass Flow (kg/s)	0.0200	0.0200	0.0338

Temperature Predictions

CO Concentrations

Selected Results with Dilution

- Fairly strong recirculation zone
- High temperature near walls
 - Adiabatic wall boundary conditions
 - Additional cooling

Residence Time

- Combustor is designed to allow for a fairly long residence time
- For fluid not trapped in recirculation – ~0.02s in primary zone

Possible Flame Hold Concerns

- Partially premixed injector
- Kinetics as faster than anticipated
- Startup case where velocity is much lower than design point

Simulations

- Rapid iteration on geometry variations
 - RANS
 - Relatively course Tet meshes
 - Reduced mechanism
- Design and off-design cases considered
- Effort to develop a functional 1MWth scale oxy-fuel combustor

Outline

- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

SwRI sCO2 Facility

 Turbo Machinery Research Facility, located in San Antonio, TX

Sunshot Test Loop

- The project will make use of a an existing sCO2 loop at SwRI
- Sunshot turbine will be replaced with letdown valve
- Addition of water separation
- Various other systems to support combustion testing

Water Separation (DCC)

- Water is not particularly soluble in CO₂ below 100°C
- Cascaded water contents
 system prevents
 excess CO₂ loss
 from cooling water

Water Separation (Inertial Separator)

- Heat exchanger to bring temperature down
- Multistage separator system to remove liquid water
- After reviewing both option, a separator has been selected

Water/CO₂ Equilibrium Testing

- Phase equilibrium test ongoing at Thar Energy
- Testing to confirm solubility limits of water in CO₂
- Needed for modeling of water separation
- Results confirm water fully condenses from CO_{2}

Outline

- Project Objectives
- Data From Bench Top Test
- Combustor Design
- Test Loop Design
- Future Work

Next Steps

• Finalize combustor design

Instrumentation details

- Finalize combustor manufacturing plan
- Long lead items purchases
- Begin manufacturing

QUESTIONS?

