Oil & Natural Gas Technology

DOE Award No.: DE-FE0009897

Quarterly Research Performance Progress Report (Period ending 6/30/2015)

Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

Project Period (10/1/2012 to 9/30/2016)

Submitted by: J. Carlos Santamarina

Georgia Institute of Technology DUNS #: 097394084 505 10th street Atlanta , GA 30332 e-mail: jcs@gatech.edu Phone number: (404) 894-7605

Prepared for: United States Department of Energy National Energy Technology Laboratory

Submission date: 8/12/2015

Office of Fossil Energy

DISCLAIMER:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ACCOMPLISHMENTS

Context – **Goals**. *Fine grained sediments host more than 90% of the global gas hydrate accumulations. Yet, hydrate formation in clayey sediments is least understood and characterized. This research focuses on <u>hydrate bearing clayey sediments</u>. The goals of this research are (1) to gain a fundamental understanding of hydrate formation and ensuing morphology, (2) to develop laboratory techniques to emulate "natural" formations, (3) to assess and develop analytical tools to predict physical properties, (4) to evaluate engineering and geological implications, and (5) to advance gas production alternatives to recover methane from these sediments.*

Accomplished

The main accomplishments for this period include:

- Formation of CO₂ hydrate in fine-grained sediment
 - Transformation from ice/water to hydrate in hydrophobic silica
- Quantified mass, and advanced thermal analysis of hydrate formation in fine-grained sediment
- Crystal formation experiments in porous media

Plan - Next reporting period

Physical understanding of hydrate formation in fine grained sediments and small pores. Evaluate the difference between gas pressure, liquid pressure and crystal pressure, and the relevance to hydrate stability. Advance Numerical model studies of physical properties of hydrate bearing sediments. Well production simulation with numerical methods.

Research in Progress

The following pages capture the slides presented at the meeting for the end of year 3, which include specific information about this quarter.

Goals – Objectives - Background

Natural HBF – Fine Grained (Analogues)

Underlying Physics

Devices

Hydrate Formation in the Lab

"Reservoir" Simulation

Physical Properties

Gas Production

Next – Team – Schedule

Goals and Objectives

The proposed research

- focus: hydrate bearing clayey sediments
- fundamental understanding of hydrate formation
- · hydrate lens topology
- · laboratory techniques to emulate "natural" formations
- · analytical tools to predict physical properties
- · engineering and geological implications
- gas production alternatives

Project Tasks

Focus: hydrate bearing clayey sediments

<u>Tasks:</u>

- fundamental understanding of hydrate formation in fine-grained sed.
- · laboratory emulation with real methane hydrate
- · assessment and prediction of physical properties
- · evaluation of engineering and geological implications
- possible paradigm shift in gas production from fine-grained sed.

Method 1	l: Sponta	neous nu	ucleation	1
Henry's law:	$M_{P,T} = P_{applied} k_{H}^{0}$	$\cdot \exp\left[\frac{-\Delta H}{\underline{R}}\left(\frac{1}{T}\right)\right]$		
	concentration enthalpy of the so Henry's law const universal gas cons	M [π lution ΔH= ant k _H ∘= stant R=8	nol/m³] -14130 J/mol 1.3×10³ M/atm at 2 314 J/(mol⋅K).	98.15 K
	Without hy	drate (C	With hvo	drate (C)
	Pure water	Salt water (con. of NaCl)	Pure water	Salt water (con. of NaCl)
Methane	0.11 (273K,3MPa) 0.0974 (273K,50MPa)	0.00177 (1m) (273K,0.1MPa)	0.065 (274K,3.5MPa)	0.05184 (273K,10MPa)
concentration	0.12 (276K 6.6MPa)		0.066 (274K 5MPa)	
[mol/kg]	0.13 (285K,10MPa)		0.067 (275K,6.5MPa)	0.09689 (283K,10MPa)
	0.00247			

21

Properties - N	eeds
<u>Mechanical</u>	- Borehole stability - Seafloor subsidence - Slope stability / Submarine landslides
Thermal	- Reservoir modeling - Production enhancement
<u>Hydraulic</u>	- Hydraulic fracturing - Water production
<u>Electrical</u>	- Saturation estimations - Fracture tomography

Team:Liang Lei (4th year)
Seth Mallett (3rd year)
NN (1st year)Sheng DaiMarco Terzariol (Production – GT/KAUST)
Junbong Jang (Production – GT/KAUST)
Hosung Shin (Well-sediment – Ulsan U.)

Task / SubTask	YEAR 1	YEAR 2	YEAR 3	YEAR 4
1.0 – PMP				
2.0 – Formation & morphology				
2a: Literature review				
2a: Laboratory protocol				
2c: X-ray tomography				
3.0 - Physical properties				
3a: Analytical estimations				
3b: Numerical Extension				
3c: Measurements				
4 - Gas Production				
4a: Experimental Study				
4b: Modeling				
5 – Implications				
5a: Settlement				
5b: Stability				
5c: Implications C-cycle				

MILESTONE LOG

Milestone	Planed completion date	Actual completion date	Verification method	Comments
Literature review	5/2013	5/2013	Report	Completed first phase. Will continue throughout the project
Preliminary laboratory proto- col	8/2013	8/2013	Report (with preliminary val- idation data)	this and previous reports
Cells for Micro-CT	8/2013	8/2013	Report (with first images)	this and previous reports
Compilation of CT images: segregated hydrate in clayey sediments	8/2014	In progress	Report (with images)	
Preliminary experimental studies on gas production	12/2014	12/2014	Report (with images)	Observed in experiments. Gas production engineer- ing is conducted analyti- cally/numerically
Analytical/numerical study of 2-media physical properties	5/2015	6/2015	Report (with analytical and numerical data)	
Experimental studies on gas production	12/2015		Report (with data)	Observed in experiments. Gas production engineer- ing is conducted analyti- cally/numerically
Early numerical results related to gas production	5/2016	In progress	Report	
Comprehensive results (in- cludes Implications)	9/2016		Comprehensive Report	

PRODUCTS

- **Publications:** In progress
- **Presentations:** In progress
- Website: Publications and key presentations are included in http://pmrl.ce.gatech.edu/ (for academic purposes only)
- Technologies or techniques: X-ray tomographer and X-ray transparent pressure vessel
- Inventions, patent applications, and/or licenses: None at this point.
- **Other products:** None at this point.

PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Research Team: The current team is shown next. We anticipate including external collaborators as the project advances

IMPACT

While it is still too early to assess impact, we can already highlight preliminary success of exploring hydrate lenses morphology in real systems, and analogue studies using a high resolution tomographer.

CHANGES/PROBLEMS:

None at this point.

SPECIAL REPORTING REQUIREMENTS:

We are progressing towards all goals for this project.

BUDGETARY INFORMATION:

As of the end of this research period, expenditures are summarized in the following table.

Note: in our academic cycle, higher expenditures typically take place during the summer quarter.

				Budget P	eriod 3			
	0	11	Ø	2	Q	3	Q	4
Baseline Reporting Quarter DE-FE009897	10/1/14 -	12/31/14	1/1/15 -	3/31/15	4/1/15 -	6/30/15	7/1/15 -	9/30/15
	Q1	Cumulative Total	Q2	Cumulative Total	Q3	Cumulative Total	Q4	Cumulative Total
Baseline Cost Plan								
Federal Share	40,059	341,026	40,059	381,086	40,059	421,145	40,059	461,204
Non-Federal Share	11,587	100,272	11,587	111,860	11,587	123,447	11,587	135,034
Total Planned	51,647	441,299	51,647	492,945	51,647	544,592	51,647	596,238
Actual Incurred Cost								
Federal Share	57,809	333,090	56,843	389,933	35,283	425,216		
Non-Federal Share	25,961	100,696	36,582	137,278	0	137,278		
Total Incurred Costs	83,770	433,786	93,425	527,211	35,283	562,494		
Variance								
Federal Share	17,749	-7,936	16,784	8,848	-4,776	4,071		
Non-Federal Share	14,374	424	24,995	25,419	-11,587	13,831		
Total Variance	32,123	-7,512	41,779	34,266	-16,364	17,903		

National Energy Technology Laboratory

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940

3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880

13131 Dairy Ashford Road, Suite 225 Sugar Land, TX 77478

1450 Queen Avenue SW Albany, OR 97321-2198

Arctic Energy Office 420 L Street, Suite 305 Anchorage, AK 99501

Visit the NETL website at: www.netl.doe.gov

Customer Service Line: 1-800-553-7681

