Coal Conversion – Pathway to Alternate Fuels

C. Lowell Miller
Director, Office of Sequestration, Hydrogen, and Clean Coal Fuels
Office of Fossil Energy
U.S. Department of Energy

2007 EIA Energy Outlook Modeling and Data Conference
Washington, DC
March 28, 2007
Overview

- DOE and Coal Liquefaction RD&D
- Coal – A Significant Source of Energy
- Coal Liquefaction Technology and Status
- Current and Growing Interest in Liquefaction
Components of Earlier DOE RD&D Coal Liquefaction Program

- Technology Screening – Bench and pilot plant projects (1964–1976)
- Component I (1976–1982)
 - Large-scale demos of Phase I processes
 - Thermal and catalytic hydrogenation processes
- Component II (1976–1999)
 - Research program
 - Pursue improvements and alternatives based on better scientific understanding
 - Bench-scale development of Phase II processes
 - Overcome techno-economic limitations of Phase I processes
 - Catalytic hydrogenation processes
Coal Conversion Processes

- Carbonization and Pyrolysis
 - Low severity (mild gasification)
 - High temperature
- Direct Liquefaction
 - One-stage reactor technology
 - Two-stage reactor technology
 - Co-processing
 - Hybrid
- Indirect Liquefaction
 - Gas reactors
 - Slurry reactors
Coal Liquefaction Technologies

<table>
<thead>
<tr>
<th>Mild Pyrolysis</th>
<th>Single-Stage Direct Liquefaction</th>
<th>Two-Stage Direct Liquefaction</th>
<th>Co-Processing and Dry Hydrogenation</th>
<th>Indirect Liquefaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ. of North Dakota Energy and</td>
<td>H-Coal Process – HRI</td>
<td>Chevron Coal Liquefaction Process</td>
<td>Solvolysis Co-Processing – Mitsubishi</td>
<td>Syntroleum</td>
</tr>
<tr>
<td>Environmental Center (EERC)/AMAX R&D</td>
<td>Imhausen High-Pressure Process</td>
<td>Lummus ITSL Process</td>
<td>Mobil Co-Processing</td>
<td>Mobil Methanol-to-Gasoline (MTG) Process</td>
</tr>
<tr>
<td>Process</td>
<td>Conoco Zinc Chloride Process</td>
<td>Mitsuishi Solvolysis Process</td>
<td>Pyrosol Co-Processing – Saabergwerke</td>
<td>Mobil Methanol-to-Olefins (MTO) Process</td>
</tr>
<tr>
<td>Institute of Gas Technology</td>
<td>Kohleol Process – Ruhrkohle</td>
<td>Pyrosol Process – Saabergwerke</td>
<td>Chevron Co-Processing</td>
<td>Shell Middle Distillate Synthesis (SMOS)</td>
</tr>
<tr>
<td>Char, Oil Energy Development (COED)</td>
<td>NEDO Process</td>
<td>Catalytic Two-Stage Liquefaction Process – DOE and HRI</td>
<td>Lummus Crest Co-Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid Solvent Extraction (LSE) Process – British Coal</td>
<td>Alberta Research Council Co-Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown Coal Liquefaction (BCL) Process – NEDO</td>
<td>CANMET Co-Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amoco CC-TSL Process</td>
<td>Rheinbraun Co-Processing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supercritical Gas Extraction (SGE) Process – British Coal</td>
<td>TUC Co-Processing</td>
<td></td>
</tr>
</tbody>
</table>

Why Coal-To-Liquids (CTL)?

- **Energy Security**
 - Size of coal resources
 - Distribution of resources

- **Environment**
 - Utilization of clean coal technology
 - Sequestration technology expected

- **Flexibility**
 - Advanced technology
 - Co-production capability

- **Economics**
 - Competitive with alternatives
 - World oil price volatility
Global Supplies

- World oil demand will grow by 40% to 50% by 2030
- Coincidentally, crude supplies increasingly concentrated in OPEC/politically unstable geographies
- Coal offers opportunity to diversify worldwide liquid fuel supplies

Comparison of World Oil and Coal Reserves

<table>
<thead>
<tr>
<th>Country</th>
<th>Oil Reserves (BBOE)</th>
<th>Coal Reserves (BBOE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>22 BBOE</td>
<td>535 BBOE</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Billion Barrels Oil Equivalent (BBOE)
Growing consensus on need to diversify transportation fuel sector
- Long term: hydrogen
- Intermediate term: liquids from coal, oil shale, liquids from biomass, increased domestic petroleum production, efficiency

Advantages of Coal and CTL Technology
- U.S. coal reserves amount to 250-year supply at current rates of consumption
- Coal resources are dispersed (proven reserves in 26 states)
- 1 ton of coal can be processed into 2 barrels of high-quality liquid fuels
- Offers opportunity to pre-invest in eventual hydrogen-from-coal production facility
The U.S. Leads in Coal Reserves

Estimated Recoverable Coal
World Total - 997,506 Million Short Tons

Source: Energy Information Administration, World Recoverable Coal Reserves
Delineation of U.S. Coal Reserves and Resources

- **RESERVES** – quantities of coal anticipated to be commercially recoverable from known accumulations from a given date forward under defined conditions.

- **RESOURCES** – quantities of coal estimated, as of a given date, to be potentially recoverable from known accumulations, but which are not currently considered commercially recoverable.

- There is sufficient reserve to meet projected demand for electricity and up to 4MM bpd CTL industry for over 100 years.

Source: EIA Coal Reserves Data 1997
U.S. Coal Reserves Distribution

- Greater Green River Coal Region
- Powder River
- Uinta
- Piceance
- San Juan
- Raton
- Arkoma
- Cherokee
- Black Warrior
- Northern Appalachian
- Central Appalachian
- Small Field or Isolated Occurrence
- Rank
 - Anthracite
 - Bituminous Coal
 - Subbituminous Coal
 - Lignite
 - A
 - B
 - S
 - L
Direct Coal Liquefaction Process

Coal + Catalyst → Coal Liquefaction → HTU → Refining

Gas Recovery Treatment

Make-Up H₂ → Recycle H₂

Slurry → Fractionation

DAO → Solvent De-ashing

H₂S, NH₃, COₓ → H₂S, NH₃, COₓ

C₁ – C₂ → C₁ – C₂

LPG → LPG

Gasoline → Gasoline

Diesel Fuel → Diesel Fuel

HVGO → HVGO

Ash Reject → Ash Reject
Hybrid DCL/ICL Plant Concept

1. Coal Gasification
2. Direct Coal Liquefaction
3. F-T Tail Gas
4. Hydrogen Recovery
5. Indirect Coal Liquefaction (F-T)
6. Product Blending and Refining
7. Raw ICL Products
8. Final Products
9. Raw DCL Products

Coal flow diagram:
- Coal to Coal Gasification
- Coal Gasification to Direct Coal Liquefaction
- Direct Coal Liquefaction to F-T Tail Gas
- F-T Tail Gas to Hydrogen Recovery
- Hydrogen Recovery to Product Blending and Refining
- Raw ICL Products to Final Products
- Raw DCL Products to Final Products

Hybrid DCL/ICL Plant Concept involves the conversion of coal to hydrogen and liquefied products through gasification and liquefaction processes.
Shenhua DCL Process

First Train: 1 MT/a Liquefaction Oil
Indirect Coal Liquefaction Overview

- **Natural Gas**
- **Coal**
- **Pet Coke**
- **Biomass**
- **Wastes**

Oxygen Plant

- **Synthesis Gas Production**
 - Gasification
 - Reforming
 - Steam
 - POX
 - ATR

F-T Liquid Synthesis

- Slurry/Fixed/Fluid-Bed

Product Recovery

- Tail Gas

Power Generation

Hydrogen Recovery

Wax Hydrocracking

- Wax
- H₂

Product Storage

- Naphtha/Diesel

Liquid Fuels

Air

O₂
Coal-To-Liquids: Current Status

- Costs – many systems analyses ongoing; for 50,000 bpd plant:
 - Capital costs estimated at $3.5–4.5 billion
 - Product cost at $40/bbl
- Technology considered commercial
 - DOE/industry completed program for development of direct liquefaction technology
 - Sasol producing 150,000 bpd of F-T products
 - Shenhua China Coal Liquefaction Corp. constructing 20,000 bpd plant; additional 180,000 bpd planned
 - Shenhua supports feasibility studies for two 80,000 bpd coal-to-liquid plants
 - Improved processes, catalysts, and slurry reactors available
 - Bench and pilot facilities at Rentech, Headwaters, Syntroleum, and ConocoPhillips
Coal-to-Liquids Plants Under Consideration in the United States

<table>
<thead>
<tr>
<th>Project Lead</th>
<th>Project Partners</th>
<th>Location</th>
<th>Feedstock</th>
<th>Status</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Clean Coal Fuels</td>
<td>None cited</td>
<td>Oakland, IL</td>
<td>Bituminous</td>
<td>Feasibility</td>
<td>25,000</td>
<td>N/A</td>
</tr>
<tr>
<td>Synfuels Inc.</td>
<td>GE, Haldor-Topsoe, NACC, ExxonMobil</td>
<td>Ascension Parish, LA</td>
<td>Lignite</td>
<td>Feasibility</td>
<td>N/A</td>
<td>$5 billion</td>
</tr>
<tr>
<td>DKRW Advanced Fuels</td>
<td>Rentech, GE</td>
<td>Medicine Bow, WY</td>
<td>Bituminous</td>
<td>Design (2011)</td>
<td>13,000 bpd</td>
<td>$1.4 billion</td>
</tr>
<tr>
<td>DKRW Advanced Fuels</td>
<td>Rentech, GE, Bull Mountain Land Company</td>
<td>Roundup, MT</td>
<td>Sub-bituminous/Lignite</td>
<td>Feasibility</td>
<td>22,000 bpd</td>
<td>$1–1.5 billion</td>
</tr>
<tr>
<td>AIDEA</td>
<td>ANRTL, CPC</td>
<td>Cook Inlet, AK</td>
<td>Sub-bituminous</td>
<td>Feasibility</td>
<td>80,000 bpd</td>
<td>$5–8 billion</td>
</tr>
<tr>
<td>Mingo County</td>
<td>Rentech</td>
<td>WV</td>
<td>Bituminous</td>
<td>Feasibility</td>
<td>20,000 bpd</td>
<td>$2 billion</td>
</tr>
<tr>
<td>WMPI</td>
<td>Sasol, Shell, DOE</td>
<td>Gilberton, PA</td>
<td>Anthracite</td>
<td>Design</td>
<td>5,000 bpd</td>
<td>$612 million</td>
</tr>
<tr>
<td>Rentech/Peabody</td>
<td>N/A</td>
<td>MT</td>
<td>Sub-bituminous/lignite</td>
<td>Feasibility</td>
<td>10,000–30,000 bpd</td>
<td>N/A</td>
</tr>
<tr>
<td>Rentech/Peabody</td>
<td>N/A</td>
<td>Southern IL, Southwest IN, Western KY</td>
<td>Bituminous</td>
<td>Feasibility</td>
<td>10,000–30,000 bpd</td>
<td>N/A</td>
</tr>
<tr>
<td>Rentech*</td>
<td>Kiewit Energy Company, WorleyParsons</td>
<td>East Dubuque, IL</td>
<td>Bituminous</td>
<td>Construction (2010)</td>
<td>1,800 bpd*</td>
<td>$800 million</td>
</tr>
<tr>
<td>Rentech</td>
<td>Adams County</td>
<td>Natchez, MS</td>
<td>Coal/Pet coke</td>
<td>Feasibility</td>
<td>10,000 bpd</td>
<td>$650–750 million</td>
</tr>
<tr>
<td>Rentech</td>
<td>Baard Energy</td>
<td>Wellsville, OH</td>
<td>Sub-bituminous</td>
<td>Feasibility</td>
<td>35,000 bpd</td>
<td>$4 billion</td>
</tr>
<tr>
<td>Headwaters</td>
<td>Hopi Tribe</td>
<td>AZ</td>
<td>Bituminous</td>
<td>Feasibility</td>
<td>10,000–50,000 bpd</td>
<td>N/A</td>
</tr>
<tr>
<td>Headwaters</td>
<td>NACC, GRE, Falkirk</td>
<td>ND</td>
<td>Lignite</td>
<td>Feasibility</td>
<td>40,000 bpd</td>
<td>$3.6 billion</td>
</tr>
</tbody>
</table>

*Co-producing fertilizer
CTL Projects Worldwide

Key
- Planning
- Engineering
- Construction
- Operational
International CTL Plants and Projects

<table>
<thead>
<tr>
<th>Country</th>
<th>Owner/Developer</th>
<th>Capacity (bpd)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Sasol</td>
<td>150,000</td>
<td>Operational</td>
</tr>
<tr>
<td>China</td>
<td>Shenhua</td>
<td>20,000 (initially)</td>
<td>Construction, Operational in 2007–2008</td>
</tr>
<tr>
<td></td>
<td>Lu’an Group</td>
<td>~3,000–4,000</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Yankuang</td>
<td>40,000 (initially) 180,000 planned</td>
<td>Construction</td>
</tr>
<tr>
<td></td>
<td>Sasol JV (2 studies)</td>
<td>80,000 (each plant)</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td>Shell/Shenhua</td>
<td>70,000–80,000</td>
<td>Planning</td>
</tr>
<tr>
<td></td>
<td>Headwaters/UK Race Investment</td>
<td>Two 700-bpd demo plants</td>
<td>Planning</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Pertamina/Accelon</td>
<td>~76,000</td>
<td>Construction</td>
</tr>
<tr>
<td>Australia</td>
<td>Anglo American/Shell</td>
<td>60,000</td>
<td>Planning</td>
</tr>
<tr>
<td>Australia</td>
<td>Altona Resources plc, Jacobs Consultancy, MineConsult</td>
<td>45,000</td>
<td>Planning</td>
</tr>
<tr>
<td>Philippines</td>
<td>Headwaters</td>
<td>50,000</td>
<td>Planning</td>
</tr>
<tr>
<td>New Zealand</td>
<td>L&M Group</td>
<td>50,000</td>
<td>Planning</td>
</tr>
</tbody>
</table>
Congressional Interest in CTL

- **Previous Congress (109th)**
 - H.R. 5965 – Progress Act
 - H.R. 5890 – American-Made Energy Trust Fund Bill
 - S. 1920 – Renewable Diesel Standard Act of 2005
 - S. 2446 – American Fuels Act of 2006
 - S. 3325 – Coal-to-Liquid Fuel Promotion Act of 2006

- **Current Congress (110th)**
 - S. 154
 - S. 155
 - H.R. 370

\[\text{Coal-to-Liquid Fuel Promotion Act of 2007}\]
Reports and Studies – CTL Processes

- Department of Defense
 - OSD Assured Fuels Initiative
 - Flight Test of F-T Jet Fuel Blend
 - Air Force Energy Industry Forum

- Mitretek
 - Techno-Economic Analysis of Wyoming Located CTL Plant
 - Gasification of Kemmerer Coal at the Mine Mouth in Wyoming for Production of Zero Sulfur Liquid Transportation Fuels and Electric Power: A Feasibility Study
 - Clean Transportation Fuels from Domestic Coal

- National Coal Council
 - America’s Energy Future

- Southern States Energy Board
 - American Energy Security Study

- Scully Capital Services, Inc.
 - The Business Case for Coal Gasification with Co-Production
Reports and Studies – CTL Processes (continued)

 - A Development Plan for a Coal-to-Liquid Fuel Program

- Energy Policy Act - 2005, Section 369
 - Commercialization of America’s Strategic Unconventional Fuels: Oil Shale • Tar Sands • Coal Derived Liquids • Heavy Oil • CO₂ Enhanced Recovery and Storage

- Rand Corporation
 - Unconventional Fuels: Strategic and Program Options

- World Coal Institute
 - Coal: Liquid Fuels
CTL Technology – Economics Remain Key Issue

- Conceptual plant designs estimate $3.5–4.5 billion required for initial 50,000-bpd plants (Capital cost = $70–90K/daily barrel)

- Plants may be profitable with crude oil price between $45–60/bbl with carbon storage (carbon storage estimated to account for $4/barrel of the required selling price)

- Higher unit investment costs for pioneer demonstration plants (10,000- to 20,000-bpd plants)

- Difficult to accurately estimate costs since no plants have been built worldwide since the 1980s
Potential Impacts on Cost
Barriers to Coal-To-Liquids

- **Technical**
 - Integrated operations of advanced CTL technologies have never been demonstrated

- **Economic**
 - Uncertainties about future world oil production
 - High capital and operations costs
 - Investment risks
 - Energy price volatility

- **Environmental**
 - CO₂ and criteria pollutant emissions
 - Expansion of coal production and requisite infrastructure (railroads, railcars, etc.)
 - Water use

- **Commercial Deployment**
 - Competition for critical process equipment, engineering, and skilled labor
 - Who would take the lead in commercial deployment? Part power part liquid fuels

- **Social**
 - NIMBY and public resistance to coal use