An Alternative Route for Coal To Liquid Fuel applying the ExxonMobil Methanol to Gasoline (MTG) Process

Samuel Tabak Ron McGihon Mitch Hindman Xinjin Zhao

ExxonMobil Research and Engineering

ExonMobil

Max Heinritz-Adrian Adrian Brandl

Uhde GmbH

2008 Gasification Technologies Conference Oct 5-8, 2008 Washington, DC

Options for Coal To Liquids

Product and Process Simplicity for MTG

Unique Shape Selective Chemistry

- Unique "Shape Selective" chemistry discovered in the early 1970's
- Development complete through the 70's/80's on a variety of process options
- Plant started up 1985 and operated successfully for ~10 years until conversion to chemical grade Methanol production
- Second generation Coal based plant scheduled for end of 2008 start-up in China
- Two additional plants in Engineering for US applications

MTG Was Commercially Operated

ownership 75% NZ Government and 25% ExxonMobil.

New Zealand Finished Gasoline Quality

	Average	Range
Octane Number, RON	92.2	92.0 – 92.5
Octane Number, MON	82.6	82.2 – 83.0
Reid Vapor Pressure, kPa	85	82 – 90
Density, kg/m ³	730	728 – 733
Induction Period, min.	325	260 – 370
Durene Content, wt%	2.0	1.74 – 2.29
Distillation		
% Evaporation at 70° C	31.5	29.5 – 34.5
% Evaporation at 100° C	53.2	51.5 – 55.5
% Evaporation at 180° C	94.9	94 – 96.5
End Point, °C	204.5	196 - 209

MTG Gasoline vs. U.S. Conventional Gasoline

- MTG Gasoline is completely compatible with conventional gasoline infrastructure.
- MTG Gasoline contains essentially no sulfur and low benzene contents.

	2005	2005	MTG	US
	Summer	Winter	Gasoline	Regulation
Oxygen(Wt%)	0.95	1.08		
API Gravity	58.4	61.9	61.8	
Aromatics(%Vol)	27.7	24.7	26.5	
Olefins(%Vol)	12	11.6	12.6	
RVP(psi)	8.3	12.12	9	
T50(F)	211.1	199.9	201	
T90(F)	330.7	324.1	320	
	4.0.0	07		20
Sulfur(ppm)	106	97	U	30
Benzene(%Vol)	1.21	1.15	0.3	1 (0.62)

2nd Generation MTG Technology

- Second Generation Design based on 10 years learning's from NZ operation
- Improved heat integration
- Improved process efficiency
- Process re-optimized for coal-based methanol

Reduced capital cost Reduced operating cost

ExxonMobil is the world leader In catalyst development and we manufacture our own catalysts.

Case Study: CTL based on MTG

Case Study: CTL based on MTG, self-sufficient

Case Study: PRENFLO PDQ, Gasifier and Key Features

- Pressurized entrained-flow gasification: 25-42 bar
- > Dry coal dust feeding: with N_2 or CO_2 as transport gas
- Oxygen as gasification agent
- Temperature in gasifier: 1,350-1,600 °C (slagging conditions)
- 4-6 side burners, tangential flow
- Gasifier protected by membrane wall (steam) and slag layer
- Full water quench for syngas saturation
- Simple and robust process concept

MTG Process Flow Diagram

ExonMobil

Case Study: CTL based on MTG, self-sufficient - Overview

Item	Unit	Lignite	Hard Coal
Coal Feed as Received	t/h	913	378
Coal Feed to Gasifier	t/h	570	353
Gasoline Product @92 R+0	bbl/d	18,000	18,000
LPG Product	bbl/d	3,300	3,300
Syngas to Liq. Thermal Efficiency	% on HHV	Base	+0.2%
CTL Thermal Efficiency*	% on HHV	Base	+5.4%

* Reported CTL efficiencies very strongly dependent on utility and upgrading assumptions, and CO2 disposition assumptions in addition to Coal quality

- Lignite with high water and medium high ash content
- Hard coal with a low water content and a medium high ash content

Current MTG Licenses

MTG JAMG Project in Shanxi China

• MTG plant currently under construction at JAMG is second generation Fixed Bed MTG Process. Start up scheduled for YE 2008.

Key Project Considerations

Technical Risk

 Methanol to Gasoline (MTG), Gasification and Methanol Synthesis are commercially proven technologies

Simplicity

– MTG does not require a "refinery" to make a marketable fuel product.

Operability

- Methanol is storable which enhances operability between stages

Constructability

- MTG uses gas phase conventional type fixed bed reactors

Flexibility

- MTG can be used for methanol from other sources such as coal bed methane or coke oven gas.
- MTG can be added downstream of existing methanol plants

EMRE/Uhde Partnership Provides Full Range of CTL Services

