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Background & Overview of Project

A multi-tier intelligent monitoring system (IMS)
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Task 2: Sensor data schema development and provisioning(Y1)
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Data-Driven, MI.-Enabled Anomaly Detection

* Machine learning (ML) is suitable for
— Continuous monitoring
— When physical process is not fully understood
— Automated anomaly detection
* Requirements
— Etfective online ML algorithms
— Labeled training data and expert insights!

— High-performance, integrated computing infrastructure
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Anomaly Detection Case Study

Cranfield, MS experiments

Dataset include Pressure and Temperature measurements from
- Base pulse testing experiments (no known leaks)
- Controlled CO, release experiments (artificial leaks)




Anomaly Detection in Pressure Data
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Anomaly Detection in DTS Data

Training Testing
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DIAL-GCS 1.0
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DIAL-GCS 2.0

Design 2.0:
» Kafka-based
* Flexible
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Task 4. Deep Learning Based Surrogate Modeling

 Deep learning (DL) is a very powerful tool for pattern recognition.
* In geosciences, there’s a lot of hype on DL but also many questions

* We developed an innovative DL pipeline for combining DL with physics-
based models

A generic simulation/inversion framework
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Time

Deep learning based surrogate models
for CO, plume prediction

Input: Permeability field
Output:

Sg:. Actual CMG-GEM result
Sg: Surrogate model results

Once trained, our model can be used to predict CO2 plume for given input
properties and at any time

240 days

105 days

. . . I W . . . .
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Validation: Comparison with Monte Carlo Simulation
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Dynamic mapping: Prediction of CO, Plume Movement
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Zhong et al., 2019a
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Web-Based Monitoring Planning

Metamodeling

Risk Portfolio Development
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Sun et al., 2018, Metamodeling-based approach for risk assessment and cost estimation:
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Leakage Assessment and Cost Estimation Tool

Admin Metamodeling Cost Estimate
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Data-Space Inversion
(DSI)

What is DSI?

A new paradigm for long-
term prediction and UQ
without using history
matching

Prior knowledge is used to
generate possible
scenarios, but not to
calibrate model

DSI combines physically-
based model with ML
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Jeong et al., 2018a, A learning-based data-
driven forecast approach for predicting
future reservoir performance. AWR.
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Optimal Monitoring Network Design

Objective Optimization
Function toolbox

Constraints

e S Binary Integer

PEX @wellidey i
OPEX($/_\NeII/day)+ Linear problem
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Convex

Optimize
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"CO,($ltc AP at tieakage detecti
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Jeong et al., 2018b, Cost-optimal design of pressure-based monitoring
networks for carbon sequestration projects, with consideration of geological 21
uncertainty, International Journal of Greenhouse Gas Control.



Our tool maximizes NPV by considering

« High uncertainty in geologic models

* Monitoring budget

» Leakage damage cost

e Carbon credit : 45Q Tax Incentives for CCUS

Log,, k (md)

3D model site scale
models

Log,, k (md)

Optimization
Toolbox for Pressure
Monitoring Network
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Lessons Learned

— We are developing an intelligent monitoring system to help
extract intelligent information. Our applications include
* Web-based monitoring planning
* Pressure-based monitoring network design
* Data space inversion
* Deep learning tools
— Data-driven machine-learning models are suitable for continuous
monitoring and anomaly detection and can be used together with
physics-based models for surrogate modeling

— A viable approach is to combine prior information, expert
knowledge, and state-of-the-art machine learning tools for
knowledge discovery and representation

23



Accomplishments to Date

— Task 2: Data management

* Year 1: Developed schema and data adaptors for storing, exchanging
information, and visualizing information

— Task 3: Complex event processing using machine learning
* Year 2: Implemented predictive models on different test datasets

* Year 3-4: Updated the existing platform for usability
— Task 4: Coupled modeling / data assimilation

* Year 2: Implemented workflow for automating data assimilation.
Demonstrated Web-based modeling approaches

* Year 3-4: Focused on ML and DL tool development

— Task 5: Integration and demonstration

* Year 1-4: Experimented with a large number of web-based technologies

for making the system more user friendly
24



Synergy Opportunities

— DIAL-GCS i1s an intelligent monitoring system designed for
anomaly detection, monitoring network design, physics-based
machine learning, leakage cost estimation

— Most tools are web-based, or can be readily converted to web-

based, for CCS decision support needs

25



Project Summary

— Developed and improved DIAL system

— All tasks are on revised schedule

— Next steps
* Formalize data transformation and work flow
* Provide deep learning based web service
* Integrate different analytic modules and disseminate results

* Wrap the project in the next year

26
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Appendix

— These slides will not be discussed during the presentation, but
are mandatory.
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Benefit to the Program

* (arbon storage program goals being addressed

Develop and validate technologies to ensure 99 percent storage permanence

* Expected benefits of this IMS Project

Transform scientific knowledge to decision power and public knowledge
Promote data sharing and visual analytics

Better collaboration among team members

Public outreach

Streamline CCS data management and decisionmaking

Facilitate the optimal allocation of monitoring resources

29



Project Overview
Goals and Objectives

Develop GCS data management module for storing, querying, exchanging, and
visualizing GCS data from multiple sources and in heterogeneous formats

— Success Criterion: Whether a flexible, user-friendly Web portal is set up for

enabling data exchange and visual analytics

Incorporate a complex event processing (CEP) engine for detecting abnormal
situations by seamlessly combining expert knowledge, rule-based reasoning, and
machine learning

— Success Criterion: Whether a set of decision rules are developed for identifying

abnormal signals in monitoring data

Enable uncertainty quantification and predictive analytics using a combination of
coupled-process modeling, data assimilation, and reduced-order modeling

— Success Criterion: Whether a suite of computational tools are developed for UQ
and predictive analytics

Integrate and demonstrate the system’s capabilities with both real and simulated data

— Success Criterion: Whether the IMS tools developed under Goals A to C are

integrated, streamlined, and demonstrated for a realistic GCS site 0
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Gantt Chart

Table 1. Revised Project Gantt chart
(Numbers in table rows indicate milestones).

@r1-2 M ; NcTE )

Task Description Year 1 Year 2 Year 3 Year 4 Y:'Zearss
1 Update project management plan ‘ ‘ | ‘ ‘ ‘ | | |
2 Sensor data management
2.1 Ontology/schema development
2.2 Sensor data adaptor
development
3 CEP Development
3.1 Rule definition
3.2 Reasoning and learning J
3.3 Testing
4 Coupled modeling/Assimilation
4.1 Coupled modeling
4.2 Reduced order modeling
5 Integration and demonstration
5.1 Integration
5.2 Demonstration
6 Synthesis of results
6.1 Dissemination of results
6.2 Technology transfer
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The optimal monitoring well locations are different because

heterogeneous permeability affects
e Spatial pressure distribution

» Leakage detection time

Black: leaky well
Green: injector
Magenta: monitoring well
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