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I - Background

* Find out how much the stored CO?2 is there, and
guantify the uncertainty. 10 million ton
plus/minus 50%, or plus/minus 5%?

e Multi-scale datasets (e.g., seismic, flow)
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i Major Challenges

(a) Conventional time-lapse monitoring

e Sparse time-lapse data
e.g. Cranfield 4Dseismic
Baseline: 2007
Repeat: 2010

 Lack of estimated physical
properties of CO, plume

e Lack of a quantitative
estimation of plume
uncertainty
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Proposed solutions

(b) CASSM with Joint SPPI and data assimilation

e Sparse time-lapse data
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Proposed solutions

« Sparse time-lapse data o iggiﬁ&;;;;a;;;;a;;' T ioheas F
Continuous monitoring 4.2§ o o 3

» Lack of estimated physical
properties of CO, plume
Time-lapse full waveform
iInversion of Vel. & attenuation 7
(1/Q) with data assimilation E
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Zhu et al., JGR, 2017
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Proposed solutions

e Sparse time-lapse data
Continuous monitoring

» Lack of estimated physical
properties of CO,, plume
Time-lapse full waveform inversion
of Vel. & Q with data assimilation

 Lack of a quantitative estimation
of plume uncertainty, lack of
Integration of seismic-flow

Bayesian inversion framework, data
assimilation
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@ PennState _ _
Project Overview:
Goals and Objectives

e develop methodologies for fast seismic full waveform
iInversion of CASSM datasets for simultaneously
estimating velocity and attenuation, and with data
assimilation; (Tasks 2 & 3)

e develop joint Bayesian petrophysical inversion of seismic
models and pressure data for providing and updating
CO, saturation models; (Task 4)

e demonstrate the methods using multiple multi-scale
datasets including (surface and borehole) synthetic,
laboratory, and field CASSM datasets. (Tasks 5 & 6)
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Technical status

e develop methodologies for fast seismic full waveform
iInversion of CASSM datasets for simultaneously
estimating velocity and attenuation, and with data
assimilation; (Tasks 2 & 3)

— subtasks 2.1, 2.2, 2.3
— task 3.1

o develop joint Bayesian petrophysical inversion of seismic
models and pressure data for providing and updating
CO, saturation models; (Task 4)

— subtasks 4.1, 4.2



Task 2: JoIint seismic Inversion

* Find a suitable wave equation (2.1)
— model wave propagation with attenuation
— Facilitate inverse wave propagation
 Joint full waveform inversion (2.2)
— Adjoint operators with attenuation

« Validation tests (2.3)

— Frio synthetic tests and comparison with field
data
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To find a better efficient solver

(subtask 2.1)
10°p 5
——f_y
\ q ) \_'_’
Dispersion Loss

Zhu and Harris (2014) Geophysics

Difficulty!!! because of spatial variable y(x,y, z)

i Impermeable

Gas: low Q(x,y,z)
Water Dry rock: hlgh Q(X,y,Z)




To find a better efficient solver
(subtask 2.1)
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Wavetield snapshot
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Wavetield snapshot
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Subtask 2.3: Frio CO2 site —
modeling and field data calibration
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Subtask 2.3: Validation with Frio
1 fleld data
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Subtask 2.2: Adjoint operators
for joint full waveform inversion

Forward
modeling

Adjoint
modeling

Lu = (Lo + L; + Ly)u = f,

2 Propagator
L0=ia——|72 pag

Wq 1 C 3 Phase dispersion
Ly = =y — (=722 +y —(-7?)’ P
0

1 .
L, = (m/% (—V%)z — mry? wio 72) % Amplitude loss
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Subtask 2.2: Adjoint operators
for joint full waveform inversion

Interaction between forward and adjoint wavefields -> FWI sensitivity Kernel

Forward Wavefield Adjoint Wavefield Interaction Wavefield
* v x vl— |« v
t = 0000 ms t = 0680 ms t = 00R0 ms

Time Integral
"\
———=x ) ;,\"--' : e
\/ Synthetic Sensitivity Kernel
* Vel. & Atten. -> Interact differently * \/

t = 0000 ms
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Task 3

e 3.1: Time-lapse joint FWI with data
assimilation

— Seismic velocity
« 3.2: Validation of time-lapse FWI with

simulated Frio Il and Cranfield monitoring
data

20



FWI-HIEKF

 Predict: Dy = Dy + 0D, (1)
Cri1 = Cp + Ay (2)

e Update:
Kyi1 = Cl:+1(Hk+1CI;+1T + Rk+1) (3)
Vpy1 = Uy + Ky (die — G0 11)S(@)6(x — x;)) (4)
Cri1= U — Kiy1Hpy1)Cryq (5)

The diagonal of covariance matrix P (variance)
In EQ.5 can be calculated using

Siev1 = O — X7=1(Ki+1)ij (Ciyr)ij (6)

Define cross-covariance C and A:
Ci+1 = Pis1Hjrq and Cpyq = PryqHiyq (7)
Apiq = Qk+1H£+1 (8)



Frio validation 2D seismic tests
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A Injection Well
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How fast the HIEKF time-lapse
FWI is?

o 3D seismic FWI in Cranfield: 111x121x61. If original EKF is applied,
the covariance matrix size is 819291x819291, which is
approximately 5 TB, while if applying HIEKF, the maximum matrix
Size is 819291x528, which is 1550 times less than EKF.

Memory usage
10000

1000
log

10

EKF EnKF HIEKF



Task 4: Ensemble Kalman Filter (EnKF)
for Inverting seismic attributes

Seismic
Amplitudes

FWI

White's
model
(forward)

M)
n

Flow simulator
(CMG, TOUGH3)

EnKF's goal is to update state vector, which
In this case contains pressure (P) and gas
saturatlon (Sg)

XP = Sg 1S, N] X+ Kgam([Qp — (X))

where f(-) is the forward model (White’s
model). EnKF assumes the state vector Is
Gaussian, so to construct the prior ensemble
(X), we draw from:

P""N(,Llp, O-P)
logit(Sg)~N(u5, 0s)
In order to honor S, € [0, 1].




ask 4 & 5: Preliminary Results: Synthetic Test
on the sandbox experiment in LBL Case

-—
Vo Qp
Vhite’s | White's
model | model
(forward) (inverse

nnnnnnn

F | OW SI m u I ator DATA ASSIMILATION FRAMEWORK FOR GAS SATURATION IN A SANDBOX EXPERIMENT

(CMG,
TOUGH3)

[

A simple, hypothetical “sandbox” experiment
By Joon and Morgan 2019 Penn State



Accomplishments to Date

Task 2.0

Development of a simple formulation of time-domain
viscoacoustic wave equation (2.1)

Building the numerical scheme and numerical code of solving
the new wave equation (2.1)

Derivation of adjoint operators for further developing the
algorithm of full waveform inversion (2.2)

Validation tests in Frio (2.3)

30



Accomplishments to Date

Task 3.0

Development of a time-lapse ensemble KF full waveform
Inversion algorithm of seismic velocity (3.1)

Synthetic tests in Frio 2D models (3.2)

Synthetic tests in Cranfield models (3.2)

Task 4.0

Updates the Cranfield subsurface geologic models (4.1)

Flow simulations of the Sandbox experiments jointly effort by
Penn State and LBL. (4.3)

EFK seismic-flow inversion (4.3)

31
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Synergy Opportunities

» develop methodologies for fast seismic full waveform
Inversion of continuous active source seismic monitoring,
(CASSM) datasets; ---- DAS data (collab. with DAS projects)

» develop deep-learning based full waveform inversion of
seismic models and pressure data for providing and updating
CO, saturation models;

32
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Project Summary

o Key findings:

 Build our seismic modeling with attenuation code (Task 2.1)
« Adjoint operators for build up the joint FWI (Task 2.2)
 Validation tests in Frio (Task 2.3)

e Time-lapse FWI with EnFK (Task 3.1)
 Validation tests in Frio and Cranfield models (Task 3.2)

» Updates the Cranfield subsurface geologic models (Task 4.1)

* Flow simulations in the Sandbox lab experiments and tests on the
EnFK seismic-flow inversion (Task 4.3)
33



Next Step

o Subtask 2.2 — Theoretical development of joint full
waveform inversion (FWI):

* vV *x ¥ x
t = 0000 ms t = 0660 ms t = 000 ms
*
Joint FWI t = 0000 ms
Seismic Seismic

Velocity Attenuation



Next Step

e Task 3 — Time-lapse of joint full waveform inversion

(FWI):
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Next Step

 Task 4 — Integration of seismic-petrophysics inversion:

: . . : 0.02 g
: Seismic : =
] Amplitudes !
i |
i FWI ]
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Vo Qp £l o >
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i model model | ~ oY
. 1 T S
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1 1
Seismic Seismic
Velocity Attenuation
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Next Step

« Task 5 — Lab setup and experiments (J. Ajo-Franklin,
Rice U.):

e Thank you for your attention!
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Benefit to the Program

e This project is closely related to Program’s goal of
developing and validating methodologies and
technologies to measure and account for 99 percent
of injected CO, in the injection zones.

 The proposed methodology will enable us to delineate
the CO, plume boundaries with great confidence,
addressing FOA goals including “...detect stored CO,
and assess the CO, plume boundaries over time
within the target reservoir...”

39
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Benefit to the Program

 The integrated inversion results from the Bayesian
approach can give the estimate realizations of CO,
saturation models but also can gquantify the limits of
detection and thresholds of uncertainty, directly
addresses FOA requesting “...quantify the limits of
detection and thresholds of uncertainty... methods
should take into account the qualities of fluids (i.e.,
CO, saturation, composition, etc.)”.

« “Real-time” ability to delineate CO, plume boundaries
and quantifying CO, saturation using seismic CASSM
and pressure data should allow DOE’s investment in
future monitoring systems that eliminate the expensive
and personnel-intensive effort of independent inversions
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Gantt Chart

Budget Period 1 Budget Period 2
Task Description Year 1 Year 2 Year 3 Year 4
1 Update project management plan
2 Joint FWI for Vp and Qp

2.1 Derivation of viscoacoustic equation

2.2 Theoretical development

2.3 Validation tests

3 Time-lapse FWI with data assimilation

3.1 Data assimilation

3.2 Validation tests

4 Bayesian inversion technique

4.1 Reservoir modeling

4.2 Pressure inversion

4.3 Bayesian inversion framework

5 Lab experiments

5.1 Experimental design and fabrication

5.2 Experimental acquisition

5.3 Data processing and analysis

6 Demonstration

6.1 Laboratory data

6.2 Field data

7 Synthesis of results
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