

Bench-scale experiments and CFD simulations for Low Aqueous Solvent with different packings

Zhijie (Jay) Xu, Pacific Northwest National Lab (PNNL) Richard Zheng, Pacific Northwest National Lab (PNNL) Christine Anderson-Cook, Los Alamos National Lab (LANL)

Challenges & Objectives

Challenges:

Packing characterization at device scale:

- Effective mass transfer area a_e
- Gas-film mass transfer coefficient k_g
- Liquid-film mass transfer coefficient k_I

Objectives:

- Using CFD to
 - directly model mass transfer area at bench-scale
 - understand the local hydrodynamics /mass transfer with complex geometry
- Using bench-scale column exp. to
 - study the performance of solvent/packing
 - validate the CFD area model

NATIONAL ENERGY TECHNOLOGY

.....

- Bench-scaled Packed Column (Overview)
- Experiments (EEMPA & MEA)
- CFD Simulations
 - 1:1 full size column CFD modeling
 - Representative column CFD modeling
- Experiment / CFD Comparison
- Plan for Sequential Design of Experiment (SDoE)
- Conclusion

- Bench-scaled Packed Column Overview
- Experiments (EEMPA & MEA)
- CFD Simulations
 - 1:1 full size column CFD modeling
 - Small size column CFD modeling
- Experiment/CFD Comparison
- Plan for Sequential Design of Experiment (SDoE)
- Conclusion

Bench-scaled Packed Column Overview

Bench-scale Column Design:

- Glass Jacket Column
- Diameter 3", Height 21"

Packing Type:

- Raschig rings
 Diameter: 6 mm
 Height: 6 mm
- 8000-9000 rings
- Material: 316SS, Nylon 6
- Porosity: 68%
- Specific area: 835 m²/m³

Solvents:

- MEA
- EEMPA

	MEA	EEMPA	
Viscosity µ [cP]	1.4	7.1	
Surface Tension σ [N/m]	0.067	0.034	
		NATIONAL ENERGY TECHNOLOGY LABORATORY	

- Bench-scaled Packed Column Overview
- Experiments (EEMPA & MEA)
- CFD Simulations
 - 1:1 full size column CFD modeling
 - Representative column CFD modeling
- Experiment/CFD Comparison
- Conclusion

Experiments of Bench-scale Packed Column

Solvent/packing pairs:

- MEA and 316SS
- EEMPA and 316SS
- MEA and Nylon 6
- EEMPA and Nylon 6

Packing Material

- 316 Stainless Steel
- Nylon 6

H = 6mm OD= 6mm Wall=0.82 mm

.....

NATIONAL ENERGY

TECHNOLOGY

Los Alamos

Lawrence Livermore National Laboratory

Measured Carbon Capture Efficiency (CE)

- CE increase with u_L/u_G
- Effective area back out from CE

- Bench-scaled Packed Column Overview
- Experiments (EEMPA & MEA)
- CFD Simulations
 - 1:1 full size column CFD modeling
 - Representative column CFD modeling
- Experiment/CFD Comparison
- Conclusion

1:1 Full Size CFD Model

Numerical Packing Process

Full Size CFD Model Setup

NATIONAL

TECHNOLOGY

1:1 Full-size CFD Model

Simulation Conditions:

- Total 9434 Rings
- Total ring surface area: 1.99 m2
- Liquid flow rate: 0.1-0.8 SLPM
- Gas flow rate: 25 SLPM
- Solvent viscosity: [1.4, 7.1] cP

Findings:

- Significant entrance effect for single point injection, distributor required.
- 20% to 30% of column height before reach fully distribution
- Stronger entrance effect for more viscous solvent

1:1 Full-size CFD Model

Simulation Conditions:

- Total 9434 Rings
- Total ring surface area: 1.99 m2
- Liquid flow rate: 0.1-0.8 SLPM
- Gas flow rate: 25 SLPM
- Solvent viscosity: [1.4, 7.1] cP

Findings:

- Significant entrance effect for single point injection, distributor required.
- 20% to 30% of column height before reach fully distribution
- Stronger entrance effect for more viscous solvent

1:1 Full-size CFD Model

Simulation Conditions:

- Total 9434 Rings
- Total ring surface area: 1.99 m2
- Liquid flow rate: 0.1-0.8 SLPM
- Gas flow rate: 25 SLPM
- Solvent viscosity: [1.4, 7.1] cP

Findings:

- Significant entrance effect for single point injection, distributor required.
- 20% to 30% of column height before reach fully distribution
- Stronger entrance effect for more viscous solvent

1:1 Full-size CFD Model

CFD Comparison w and w/o Distributor

Flow Rate: 0.76 SLPM

Distributor design in experiment

 $a^{b.30}_{e}a^{b}_{0.25}$ Normalized Interface Area 0.20 0.15 10 cm shorter in 0.10 entrance length 0.05 -- O-- No Distributor ---- With Distributor 0.00 0.25 0.00 0.05 0.10 0.15 0.20 Distance from solvent inlet (m) Inlet

Distributor will be used for all experiments

.....

Lawrence Livermore National Laboratory

NATIONAL ENERGY TECHNOLOGY

Pacific Northwest

LABORATORY

Los Alamos

- Bench-scaled Packed Column Overview
- Experiments (EEMPA & MEA)
- CFD Simulations
 - 1:1 full size column CFD modeling
 - Representative column modeling
- Experiment/CFD Comparison
- Conclusion

Representative Column Setup

- Column Size: H = 6 cm, OD= 7.62 cm
- Packing Height Z =[0 5] cm
- Raschig Ring Size 6 mm
- Specific Area $a_p = 857 \text{ m}^2/\text{m}^3$

- 2.9 million mesh with mesh size
- Run to 8s (3 hours Simulation) for converged solution
- Good size for sensitivity study

Sensitivity Study For Solvent Parameters

Fixed Parameter:

 $\rho_L = 1077 \text{ kg/m}^3$, $u_L = 1.46 \times 10^{-3} \text{m/s}$

Varying one parameter at a time (~30 runs);

Range covers MEA and EEMPA:

Contact angle θ [10° 90°] Surface tension σ [25 70] N/m Solvent viscosity μ_L [2 10] cP

Sensitivity Study For Solvent Parameters

- Fixed Parameter:
- $\rho_L = 1077 \text{ kg/m}^3$, $u_L = 1.46 \times 10^{-3} \text{m/s}$
- Varying one parameter at a time (~30 runs);

Range covers MEA and EEMPA:

Contact angle θ [10° 90°] Surface tension σ [25 70] N/m Solvent viscosity μ_L [2 10] cP

SDoE for CFD

- Initial 50 runs to explore 5-dim parameter $(u_L, u_G, \mu_L, \sigma, \theta)$ space
- Selected to cover bench experiment conditions

CFD Parameters	Range
Viscosity μ_L [cP]	[5 15]
Surface Tension σ [N/m]	[0.01 0.04]
Contact Angle θ [°]	[5 80]
Solvent Flow Rate u_L [L/min]	[0.1 0.9]
Gas Flow Rate u_G [SLPM]	[10 100]

Statistical Analysis of 50 CFD Runs

Effect Summary	Sensitivity Score	Sensitivity Rank
Contact Angle	27.341	1
Solvent Flow Rate	13.375	2
Surface Tension	9.434	3
Solvent Flow Rate* Solvent Flow Rate	6.484	
Others		

THE UNIVERSITY OF

WestVirginiaUniversity.

Lawrence Livermore National Laboratory

- Bench-scaled Packed Column Overview
- Experiments (EEMPA & MEA)
- CFD Simulations
 - 1:1 full size column CFD modeling
 - Small size column CFD modeling
- Experiment/CFD Comparison
- Conclusion

Experiment / CFD Comparison

Physical Properties of Solvent

- Solvent type: MEA, EEMPA
- Three key parameters:
 - \Box Viscosity μ_L
 - \Box Surface tension σ
 - \Box Contact angle θ (much larger uncertainty)
- Three data sources:
 - □ Measured at PNNL
 - □ Aspen predicted
 - Existing correlation
- Identify the range of these parameters in packed column
- Quantify the uncertainty in CFD interface area prediction

THE UNIVERSITY OF

West Virginia University,

Experiment/CFD Results Comparison

Contact angle in column: **Experiment Pair Contact Angle** Liquid Viscosity **Surface Tension** [°] (Best Guess) [cP] (From [N/m] (From (difficult to precisely determine) Aspen & Paper) Aspen & Paper) Roughness EEMPA+SS316 [30, 46] [0.026, 0.038][6.2, 7.6] Geometry EEMPA+Nylon6 [15, 23] [0.026, 0.038][6.2, 7.6]Loading MEA+SS316 [19.8, 52.6] [0.054, 0.07][1.38, 2.54] Temperature, etc. MEA+Nylon6 [19.8, 52.6] [0.054, 0.07][1.38, 2.54]

Experiment/CFD Results Comparison

Contact angle in column: (difficult to precisely determine)	Experiment Pair	Contact Angle [°] (Best Guess)	Surface Tension [N/m] (From Aspen & Paper)	Liquid Viscosity [cP] (From Aspen & Paper)
 Roughness Coordinates 	EEMPA+SS316	[30, 46]	[0.026, 0.038]	[6.2, 7.6]
	EEMPA+Nylon6	[15, 23]	[0.026, 0.038]	[6.2, 7.6]
Loading	MEA+SS316	[19.8, 52.6]	[0.054, 0.07]	[1.38, 2.54]
 Temperature, etc. 	MEA+Nylon6	[19.8, 52.6]	[0.054, 0.07]	[1.38, 2.54]

Next Step: Plan for SDoE

Conclusion

Validation Against Bench-cart Column Experiment

- Solvents: MEA, EEMPA
- Packing: SS316, Nylon 6
- Leverage Aspen prediction of properties

CFD Approach Optimized

- Direct calculation of interface area
- Full-size column for entrance effect:
 - Viscous solvent has stronger effect
 - □ Liquid distributor will reduce 2/3 of the effect
- Computationally efficient representative column model

Sensitivity Study

- Contact angle θ has the largest impact to the CFD interface area prediction.
- We need better understanding of its role and influential factors.

Acknowledgements

PNNL: Dushyant Barpaga, Charlie Freeman, David Heldebrant, Jie Bao, Rajesh
Singh, Chao Wang, Yucheng Fu
LANL: Christine Anderson-Cook, Sham Bhat, John Baca, Christopher Russell
NETL: Michael Matuszewski, Benjamin Omell, Joshua Morgan, Grigorios Panagakos
UT Austin: Gary Rochelle

Disclaimer: This work is made available as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

For more information <u>https://www.acceleratecarboncapture.org/</u>

Your Contact Info Zhijie.Xu@pnnl.gov

OUR RESEARCH FEATURED IN I&EC JOURNAL (POSTERS)

.....

BERKELEY LAB

- AT AUSTIN

Los Alamos NAL LABORATORY

NATIONAL LABORATORY