Earth, Energy, Environment **Colorado Fuel Cell Center** #### CO₂-to-fuels through novel electrochemical catalysis Federal funding: \$800,000 Cost share: \$200,000 Project duration: January 2019 – December 2020 Robert Braun, Robert J. Kee, Ryan P. O'Hayre, Neal P. Sullivan Colorado School of Mines Erick White National Renewable Energy Laboratory Award number DE-FE0031716 Federal Project Manager Sai Gollakota 2019 CCUS Review, Pittsburgh, PA Wednesday August 28, 2019 ### Objective: Integrate advanced catalysts with protonconducting ceramic membranes for CO₂ upgrading Earth, Energy, Environment **Colorado Fuel Cell Center** # Results: We have upgraded CO₂ + H₂ feed streams into drop-in fuels for natural gas pipelines C F C C Earth, Energy, Environment **Colorado Fuel Cell Center** #### **Novel protonic-ceramic materials set** - Fuel electrode: Ni BaCe_{0.4}Zr_{0.4}Y_{0.1}Yb_{0.1}O_{3-δ}, upgrade CO₂ to CH₄ - Ceramic membrane: BaCe_{0.4}Zr_{0.4}Y_{0.1}Yb_{0.1}O_{3-δ}, proton conduction - Steam electrode: BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3- δ}, electrolyze H₂O (future) # Results: We have upgraded $CO_2 + H_2$ feed streams into drop-in fuels for natural gas pipelines Earth, Energy, Environment Colorado Fuel Cell Center - Stability of proton-conducting ceramics in high CO₂ is evident - Over 100 hours of continuous operation with no performance degradation - Encouraging CO₂ conversion and CH₄ selectivity demonstrated - All tests to date reflect the zero-electrolysis "bound" - CO₂ conversion over 60% at 450 °C - CH₄ selectivity over 80% at 450 °C #### **Going forward** - Explore the other "bound" of Sabatier Electrolyzer - All hydrogen produced through electrolysis of H₂O - Incorporate novel catalyst to produce high-carbon fuel # CO₂-to-fuels through novel electrochemical catalysis Earth, Energy, Environment **Colorado Fuel Cell Center** ### Thank you for your kind attention!