

Earth, Energy, Environment

Colorado Fuel Cell Center

CO₂-to-fuels through novel electrochemical catalysis

Federal funding: \$800,000

Cost share: \$200,000

Project duration: January 2019 – December 2020

Robert Braun, Robert J. Kee, Ryan P. O'Hayre, Neal P. Sullivan Colorado School of Mines

Erick White
National Renewable Energy Laboratory

Award number DE-FE0031716 Federal Project Manager Sai Gollakota

2019 CCUS Review, Pittsburgh, PA

Wednesday August 28, 2019

Objective: Integrate advanced catalysts with protonconducting ceramic membranes for CO₂ upgrading

Earth, Energy, Environment

Colorado Fuel Cell Center

Results: We have upgraded CO₂ + H₂ feed streams into drop-in fuels for natural gas pipelines

C F C C

Earth, Energy, Environment

Colorado Fuel Cell Center

Novel protonic-ceramic materials set

- Fuel electrode: Ni BaCe_{0.4}Zr_{0.4}Y_{0.1}Yb_{0.1}O_{3-δ}, upgrade CO₂ to CH₄
- Ceramic membrane: BaCe_{0.4}Zr_{0.4}Y_{0.1}Yb_{0.1}O_{3-δ}, proton conduction
- Steam electrode: BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3- δ}, electrolyze H₂O (future)

Results: We have upgraded $CO_2 + H_2$ feed streams into drop-in fuels for natural gas pipelines

Earth, Energy, Environment

Colorado Fuel Cell Center

- Stability of proton-conducting ceramics in high CO₂ is evident
 - Over 100 hours of continuous operation with no performance degradation
- Encouraging CO₂ conversion and CH₄ selectivity demonstrated
 - All tests to date reflect the zero-electrolysis "bound"
 - CO₂ conversion over 60% at 450 °C
 - CH₄ selectivity over 80% at 450 °C

Going forward

- Explore the other "bound" of Sabatier Electrolyzer
 - All hydrogen produced through electrolysis of H₂O
- Incorporate novel catalyst to produce high-carbon fuel

CO₂-to-fuels through novel electrochemical catalysis

Earth, Energy, Environment

Colorado Fuel Cell Center

Thank you for your kind attention!

